Answer
Verified
108.9k+ views
Hint: If \[a\], \[b\] and \[c\] are the consecutive terms of an AP, then using the properties of arithmetic progression, \[b-a = c-b\].
Also, the area of the triangle with the vertices \[(x_{1},y_{1})\], \[(x_{2},y_{2})\] and \[(x_{3},y_{3})\] is given by the formula \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\].
Complete step-by-step answer:
Given the terms \[3k-2, 2k^{2}-5k+8\] and \[4k+3\] are the consecutive terms of an AP.
Using the properties of arithmetic progression, the difference between the consecutive terms are equal.
This implies,
\[2k^{2}-5k+8-(3k-2) = 4k+3-(2k^{2}-5k+8)\]
Solving them as follows:
\[\begin{align*}2k^{2}-5k+8-(3k-2) &= 4k+3-(2k^{2}-5k+8)\\ 2k^{2}-8k+10 &= -2k^{2}+9k-5\\
4k^{2}-17k+15 &= 0\\ 4k^{2}-12k-5k+15 &=0\\ 4k(k-3)+3(k-3) &=0\\ (k-3)(4k+3) &=0\\ k &=3, -\dfrac{3}{4}\end{align*}\]
So, the value of \[k = 3, -\dfrac{3}{4}\].
Now, the vertices of the triangle are \[(k,2)\], \[(3k,2)\] and \[(2,5)\], and its area is \[6\,\text{sq.u}\].
So, substituting the values into the formula for the area of the triangle, \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\], it gives,
\[\begin{align*}6 &= \dfrac{1}{2}[k(2-5)+3k(5-2)+2(2-2)]\\ 12 &= -3k+9k\\ 12 &= 6k\\ k&= 2\end{align*}\]
Therefore, the value of \[k\] is 2.
Note: The area of the triangle can also be evaluated using the lengths of the sides of the triangle, and then using Heron's formula to calculate the area.
Also, the area of the triangle with the vertices \[(x_{1},y_{1})\], \[(x_{2},y_{2})\] and \[(x_{3},y_{3})\] is given by the formula \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\].
Complete step-by-step answer:
Given the terms \[3k-2, 2k^{2}-5k+8\] and \[4k+3\] are the consecutive terms of an AP.
Using the properties of arithmetic progression, the difference between the consecutive terms are equal.
This implies,
\[2k^{2}-5k+8-(3k-2) = 4k+3-(2k^{2}-5k+8)\]
Solving them as follows:
\[\begin{align*}2k^{2}-5k+8-(3k-2) &= 4k+3-(2k^{2}-5k+8)\\ 2k^{2}-8k+10 &= -2k^{2}+9k-5\\
4k^{2}-17k+15 &= 0\\ 4k^{2}-12k-5k+15 &=0\\ 4k(k-3)+3(k-3) &=0\\ (k-3)(4k+3) &=0\\ k &=3, -\dfrac{3}{4}\end{align*}\]
So, the value of \[k = 3, -\dfrac{3}{4}\].
Now, the vertices of the triangle are \[(k,2)\], \[(3k,2)\] and \[(2,5)\], and its area is \[6\,\text{sq.u}\].
So, substituting the values into the formula for the area of the triangle, \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\], it gives,
\[\begin{align*}6 &= \dfrac{1}{2}[k(2-5)+3k(5-2)+2(2-2)]\\ 12 &= -3k+9k\\ 12 &= 6k\\ k&= 2\end{align*}\]
Therefore, the value of \[k\] is 2.
Note: The area of the triangle can also be evaluated using the lengths of the sides of the triangle, and then using Heron's formula to calculate the area.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main