
Determine the time spent by a particle in a magnetic field and change in its momentum.
Answer
147k+ views
Hint To find the time spent by a particle in a magnetic field we find the length of the arc (path taken by the particle in the magnetic field) by multiplying the angle made by the arc with the radius of the arc. Substituting the equation of radius in the equation of length of arc and dividing it by velocity of the particle, we get the time spent by the particle.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is
Change in momentum or impulse is
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle

Length of the arc (path taken by particle)
Angle made by arc
Substituting the value of radius in the length of the arc,
Here, represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
Time spent is

Momentum while entering the magnetic field is
Momentum while leaving the magnetic field is
The difference of these momentum gives us the change in momentum,
The change in momentum is
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as . We should take the angle as and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is
Change in momentum or impulse is
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle

Length of the arc (path taken by particle)
Angle made by arc
Substituting the value of radius in the length of the arc,
Here,
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
Time spent is

Momentum while entering the magnetic field is
Momentum while leaving the magnetic field is
The difference of these momentum gives us the change in momentum,
The change in momentum is
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
EMI starts from ₹2,775 per month
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

A proton accelerated by a potential difference of 500 class 12 physics JEE_Main

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Study Plan for 2025: Tips, Timetable, and Strategy

Collision - Important Concepts and Tips for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced Live Classes for 2025 By Vedantu
