Determine the time spent by a particle in a magnetic field and change in its momentum.
Answer
Verified
116.4k+ views
Hint To find the time spent by a particle in a magnetic field we find the length of the arc (path taken by the particle in the magnetic field) by multiplying the angle made by the arc with the radius of the arc. Substituting the equation of radius in the equation of length of arc and dividing it by velocity of the particle, we get the time spent by the particle.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is $t = \dfrac{l}{v}$
Change in momentum or impulse is $\Delta p = \Delta mv$
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle
Length of the arc (path taken by particle)
$ \Rightarrow l = 2\theta R$
Angle made by arc $\theta + \theta = 2\theta $
Substituting the value of radius in the length of the arc,
$ \Rightarrow R = \dfrac{{mv}}{{qB}} $
$ \Rightarrow l = \dfrac{{2\theta mv}}{{qB}} $
Here, $m,v,q,B$ represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
$ \Rightarrow t = \dfrac{l}{v} $
$ \Rightarrow t = \dfrac{{2\theta m}}{{qB}} $
Time spent is $t = \dfrac{{2\theta m}}{{qB}}$
Momentum while entering the magnetic field is ${p_e} = mvcos\theta j + mv\sin \theta i$
Momentum while leaving the magnetic field is ${p_l} = mvcos\theta j - mv\sin \theta i$
The difference of these momentum gives us the change in momentum,
$ \Rightarrow {p_l} - {p_e} = \Delta p $
$ \Rightarrow \Delta p = (mvcos\theta j - mv\sin \theta i) - (mvcos\theta j + mv\sin \theta i) $
$ \Rightarrow \Delta p = - 2mv\sin \theta i $
The change in momentum is $\Delta p = - 2mv\sin \theta i$
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as$90^\circ $. We should take the angle as $\theta $ and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
The change in momentum is the difference in momentum of the particle before entering the magnetic field and while leaving the magnetic field. The change in momentum is also called the impulse.
Formula used
Time spent by the particle is $t = \dfrac{l}{v}$
Change in momentum or impulse is $\Delta p = \Delta mv$
Here, Length of the arc is represented , Velocity of the particle is represented by , Time spent by the particle is given by , and Change in momentum is given by
Complete Step by step solution
The given diagram explains the path taken by the particle
Length of the arc (path taken by particle)
$ \Rightarrow l = 2\theta R$
Angle made by arc $\theta + \theta = 2\theta $
Substituting the value of radius in the length of the arc,
$ \Rightarrow R = \dfrac{{mv}}{{qB}} $
$ \Rightarrow l = \dfrac{{2\theta mv}}{{qB}} $
Here, $m,v,q,B$ represent the mass, velocity, charge of the particle, and the magnitude of the magnetic field into the plane respectively.
Dividing the length of the arc with the velocity we get the time spent by a particle in the magnetic field
$ \Rightarrow t = \dfrac{l}{v} $
$ \Rightarrow t = \dfrac{{2\theta m}}{{qB}} $
Time spent is $t = \dfrac{{2\theta m}}{{qB}}$
Momentum while entering the magnetic field is ${p_e} = mvcos\theta j + mv\sin \theta i$
Momentum while leaving the magnetic field is ${p_l} = mvcos\theta j - mv\sin \theta i$
The difference of these momentum gives us the change in momentum,
$ \Rightarrow {p_l} - {p_e} = \Delta p $
$ \Rightarrow \Delta p = (mvcos\theta j - mv\sin \theta i) - (mvcos\theta j + mv\sin \theta i) $
$ \Rightarrow \Delta p = - 2mv\sin \theta i $
The change in momentum is $\Delta p = - 2mv\sin \theta i$
Note Students may get confused with the angle with which the particle enters the magnetic field. Students may presume it as$90^\circ $. We should take the angle as $\theta $ and proceed. Time spent can also be found by dividing the angle made by an arc with angular velocity.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025