
If a wire of resistance R is stretched to double of its length, then new resistance will be:
A) R/2
B) 2R
C) 4R
D) 16R
Answer
512.4k+ views
Hint: Resistance is defined as the property of a material to show hindrance against the current flowing in the conductor. It always moves opposite in the direction of the current.
The expression for the resistance of a wire is given as,
$R = \rho \dfrac{l}{A}$ where,
ρ is the resistivity of a material.
l is the length of wire.
A is the cross-sectional area.
In these types of questions, we will first find the resistance of wire having new length and divide it with the resistance of wire having original length so that we can find out the value of new resistance.
Complete step-by-step answer:
The resistance of wire having length (l) and area of cross-section (A) is given by-
$R = \rho \dfrac{l}{A}$
Now, on stretching a wire,
(a) volume of wire remains constant
(b) length of wire increases
(c) Area of cross section decreases
(d) Resistivity of wire remains constant.
If the length of the wire gets doubled, the new length of wire will be,
$l' = 2l$
As the length of wire gets doubled, the cross-sectional area will become half of its previous value because volume of wire remains constant.
So, the new cross-sectional area becomes:
$A' = \dfrac{A}{2}$
Now, the new resistance of the wire is given as:
$R' = \rho \dfrac{{l'}}{{A'}}$
Put all the values in formula, we get
⇒$R' = \rho \dfrac{{2l}}{{\dfrac{A}{2}}}$
⇒$R' = 4\rho \dfrac{l}{A}$
Now we will divide new resistance with previous resistance,
⇒$\dfrac{{R'}}{R} = \dfrac{{4\rho \dfrac{l}{A}}}{{\rho \dfrac{l}{A}}}$
⇒$\dfrac{{R'}}{R} = 4$
$R' = 4R$
Hence, we can see that the new resistance is four times the previous resistance.
Option C is correct.
Note: Due to increase in the length of wire it will become thinner and longer. If the wire is thinner, it will be difficult for the charge to move through, and so the resistance will increase. If the wire is longer, then the charge has to move further, so its resistance has increased.
The expression for the resistance of a wire is given as,
$R = \rho \dfrac{l}{A}$ where,
ρ is the resistivity of a material.
l is the length of wire.
A is the cross-sectional area.
In these types of questions, we will first find the resistance of wire having new length and divide it with the resistance of wire having original length so that we can find out the value of new resistance.
Complete step-by-step answer:
The resistance of wire having length (l) and area of cross-section (A) is given by-
$R = \rho \dfrac{l}{A}$
Now, on stretching a wire,
(a) volume of wire remains constant
(b) length of wire increases
(c) Area of cross section decreases
(d) Resistivity of wire remains constant.
If the length of the wire gets doubled, the new length of wire will be,
$l' = 2l$
As the length of wire gets doubled, the cross-sectional area will become half of its previous value because volume of wire remains constant.
So, the new cross-sectional area becomes:
$A' = \dfrac{A}{2}$
Now, the new resistance of the wire is given as:
$R' = \rho \dfrac{{l'}}{{A'}}$
Put all the values in formula, we get
⇒$R' = \rho \dfrac{{2l}}{{\dfrac{A}{2}}}$
⇒$R' = 4\rho \dfrac{l}{A}$
Now we will divide new resistance with previous resistance,
⇒$\dfrac{{R'}}{R} = \dfrac{{4\rho \dfrac{l}{A}}}{{\rho \dfrac{l}{A}}}$
⇒$\dfrac{{R'}}{R} = 4$
$R' = 4R$
Hence, we can see that the new resistance is four times the previous resistance.
Option C is correct.
Note: Due to increase in the length of wire it will become thinner and longer. If the wire is thinner, it will be difficult for the charge to move through, and so the resistance will increase. If the wire is longer, then the charge has to move further, so its resistance has increased.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

