Answer
Verified
109.2k+ views
Hint: In this problem just multiply with the suitable trigonometric ratio and convert the given equation in terms of \[\tan {\text{ or }}\cot \] by using the simple trigonometric formulae since the given options are in terms of \[\tan {\text{ and }}\cot \].
Complete step-by-step answer:
Given \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\]
Multiplying and dividing with \[\cos {10^0}\] then we have
\[
\Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}}\left( {\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}} \right) \\
\\
\dfrac{{ \Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} + \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}}{{\dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} - \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}} \\
\]
Since \[\dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}} = \tan {10^0}\]
\[ \Rightarrow \dfrac{{1 + \tan {{10}^0}}}{{1 - \tan {{10}^0}}}\]
We can write \[\tan {45^0}\]in place of \[1\] as \[\tan {45^0} = 1\] then we get
\[ \Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}}\]
By using the formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] we have
\[
\Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}} = \tan \left( {{{45}^0} + {{10}^0}} \right) \\
\\
{\text{ = tan5}}{{\text{5}}^0} \\
\]
Thus, \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\] is equal to \[\tan {55^0}\]
Therefore, the answer is option A \[\tan {55^0}\]
Note: In this problem there are chances to change the options by converting \[\tan \]into \[\cot \]or from\[\tan \] to \[\cot \]. Then we have to change them accordingly. And try to remember more formulae from the trigonometry part so that you can make problems easier.
Complete step-by-step answer:
Given \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\]
Multiplying and dividing with \[\cos {10^0}\] then we have
\[
\Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}}\left( {\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}} \right) \\
\\
\dfrac{{ \Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} + \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}}{{\dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} - \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}} \\
\]
Since \[\dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}} = \tan {10^0}\]
\[ \Rightarrow \dfrac{{1 + \tan {{10}^0}}}{{1 - \tan {{10}^0}}}\]
We can write \[\tan {45^0}\]in place of \[1\] as \[\tan {45^0} = 1\] then we get
\[ \Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}}\]
By using the formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] we have
\[
\Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}} = \tan \left( {{{45}^0} + {{10}^0}} \right) \\
\\
{\text{ = tan5}}{{\text{5}}^0} \\
\]
Thus, \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\] is equal to \[\tan {55^0}\]
Therefore, the answer is option A \[\tan {55^0}\]
Note: In this problem there are chances to change the options by converting \[\tan \]into \[\cot \]or from\[\tan \] to \[\cot \]. Then we have to change them accordingly. And try to remember more formulae from the trigonometry part so that you can make problems easier.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main