
What is the dimension of young’s modulus of elasticity?
(A) \[[M{L^{ - 1}}{T^{ - 2}}]\]
(B) \[[ML{T^{ - 2}}]\]
(C) \[[ML{T^{ - 1}}]\]
(D) None of these
Answer
217.8k+ views
Hint: Young’s modulus is defined as the ratio of stress to strain. Stress is forced by area and strain is a dimensionless quantity. Hence when substituted the Young’s modulus has the dimensions of stress.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

