Answer
Verified
108.9k+ views
Hint: Young’s modulus is defined as the ratio of stress to strain. Stress is forced by area and strain is a dimensionless quantity. Hence when substituted the Young’s modulus has the dimensions of stress.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main