
What is the dimension of young’s modulus of elasticity?
(A) \[[M{L^{ - 1}}{T^{ - 2}}]\]
(B) \[[ML{T^{ - 2}}]\]
(C) \[[ML{T^{ - 1}}]\]
(D) None of these
Answer
232.8k+ views
Hint: Young’s modulus is defined as the ratio of stress to strain. Stress is forced by area and strain is a dimensionless quantity. Hence when substituted the Young’s modulus has the dimensions of stress.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

