What is the dimensional formula for magnetic flux densities?
Answer
Verified
118.8k+ views
Hint: The above problem can be resolved by using the concepts and applications of the dimensional formulas. The dimensional formula for the magnetic flux density can be obtained by the mathematical relation for the magnetic flux density. The magnetic flux density is determined by taking the ratio of the magnetic flux and the region's volume taken into consideration. Then the corresponding values are substituted, and the final result is obtained.
Complete Step by Step Solution:
A dimensional formula represents an equation, which gives the relation between fundamental units and derived units in terms of dimensions.
The length, mass and time are taken as three base dimensions and are represented by letters L, M, T respectively.
Magnetic flux is a measure of the quantity of magnetism, being the total number of magnetic lines of force passing through a specified area in a magnetic field. Magnetic flux through a plane of area $A$ placed in a uniform magnetic field $B$ can be written as ${\varphi _B} = B \cdot A = BA\cos \theta $.
The dimensional formula of area is $A = \left[ {{M^0}{L^2}{T^0}} \right]$ and
The dimensional formula of magnetic field is $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$ since, $B = \dfrac{{{\text{Force}}}}{{{\text{Charge} \times \text{Velocity}}}} = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^0}{T^0}{I^1}} \right]\left[ {{L^1}{T^{ - 1}}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Since $\cos \theta $ is a number, it has no dimensions.
Thus, the dimensional formula of magnetic flux is ${\varphi _B} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]\left[ {{L^2}} \right] = \left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]$
Magnetic Flux Density is the amount of magnetic flux through unit area taken perpendicular to direction of magnetic flux. Mathematically, $b = \dfrac{{{\varphi _B}}}{A}$.
Thus, the dimensional formula of magnetic flux density is $b = \dfrac{{{\varphi _B}}}{A} = \dfrac{{\left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Note: Flux Density ($b$) is related to Magnetic Field ($B$) by $b = \mu B$ where $\mu $ is the permeability of the medium (material) where we are measuring the fields.
The permeability of the medium is a constant and has no dimensions.
Thus the dimensional formula of magnetic flux density is the same as that of the magnetic field $B$, which is given by, $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Complete Step by Step Solution:
A dimensional formula represents an equation, which gives the relation between fundamental units and derived units in terms of dimensions.
The length, mass and time are taken as three base dimensions and are represented by letters L, M, T respectively.
Magnetic flux is a measure of the quantity of magnetism, being the total number of magnetic lines of force passing through a specified area in a magnetic field. Magnetic flux through a plane of area $A$ placed in a uniform magnetic field $B$ can be written as ${\varphi _B} = B \cdot A = BA\cos \theta $.
The dimensional formula of area is $A = \left[ {{M^0}{L^2}{T^0}} \right]$ and
The dimensional formula of magnetic field is $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$ since, $B = \dfrac{{{\text{Force}}}}{{{\text{Charge} \times \text{Velocity}}}} = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^0}{T^0}{I^1}} \right]\left[ {{L^1}{T^{ - 1}}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Since $\cos \theta $ is a number, it has no dimensions.
Thus, the dimensional formula of magnetic flux is ${\varphi _B} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]\left[ {{L^2}} \right] = \left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]$
Magnetic Flux Density is the amount of magnetic flux through unit area taken perpendicular to direction of magnetic flux. Mathematically, $b = \dfrac{{{\varphi _B}}}{A}$.
Thus, the dimensional formula of magnetic flux density is $b = \dfrac{{{\varphi _B}}}{A} = \dfrac{{\left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Note: Flux Density ($b$) is related to Magnetic Field ($B$) by $b = \mu B$ where $\mu $ is the permeability of the medium (material) where we are measuring the fields.
The permeability of the medium is a constant and has no dimensions.
Thus the dimensional formula of magnetic flux density is the same as that of the magnetic field $B$, which is given by, $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs