
Electric potential at equatorial point of a small dipole with dipole moment p(At, r distance from the dipole) is
A. zero
B.
C.
D.
Answer
147k+ views
Hint:Electric dipole moment measures the separation of the positive and negative electrical charges within a system and is defined as the product of the magnitude of the charge and the distance between them. The electric potential at the equatorial point of a small dipole can be found by using the formula of electric potential at the equatorial point
Formula used:
Magnitude of the intensity of the electric field at a distance r on equatorial line is given as,
Electric potential at the equatorial point is given as,
Where p is dipole moment, is the electric potential on the equatorial line, r is distance from dipole and k is coulomb’s constant, .
Complete step by step solution:
As we know that magnitude of the intensity of electric field at a distance r on equatorial line is,
As electric potential at equatorial point is,
For the equatorial axis of the dipole,
The angle between the line joining the point with the centre of the dipole and the axial line of the dipole. Therefore, when the given point is on the equatorial axis, the electric potential is zero
Hence option A is the correct answer.
Note: An electric dipole consists of a pair of two charges equal in magnitude (q) but opposite in nature (i.e. one is a positive charge and the other is a negative charge). These two charges are separated by a distance of length d. An electric dipole moment can be calculated as the product of charge and the distance between them.
Formula used:
Magnitude of the intensity of the electric field at a distance r on equatorial line is given as,
Electric potential at the equatorial point is given as,
Where p is dipole moment,
Complete step by step solution:
As we know that magnitude of the intensity of electric field at a distance r on equatorial line is,
As electric potential at equatorial point is,
For the equatorial axis of the dipole,
The angle
Hence option A is the correct answer.
Note: An electric dipole consists of a pair of two charges equal in magnitude (q) but opposite in nature (i.e. one is a positive charge and the other is a negative charge). These two charges are separated by a distance of length d. An electric dipole moment can be calculated as the product of charge and the distance between them.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
