Answer
Verified
99.9k+ views
Hint:Electric dipole moment measures the separation of the positive and negative electrical charges within a system and is defined as the product of the magnitude of the charge and the distance between them. The electric potential at the equatorial point of a small dipole can be found by using the formula of electric potential at the equatorial point
Formula used:
Magnitude of the intensity of the electric field at a distance r on equatorial line is given as,
\[{E_e} = k \times \dfrac{p}{{{r^3}}}\]
Electric potential at the equatorial point is given as,
\[{V_e} = k \times \dfrac{p}{{{r^2}}}\]
Where p is dipole moment, \[{V_e}\] is the electric potential on the equatorial line, r is distance from dipole and k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\].
Complete step by step solution:
As we know that magnitude of the intensity of electric field at a distance r on equatorial line is,
\[{E_e} = k \times \dfrac{p}{{{r^3}}}\]
As electric potential at equatorial point is,
\[{V_e} = k \times \dfrac{p}{{{r^2}}} = 0{\rm{(cos9}}{{\rm{0}}^0} = 0)\]
For the equatorial axis of the dipole,
\[\theta = {90^0}\]
The angle \[\theta \] between the line joining the point with the centre of the dipole and the axial line of the dipole. Therefore, when the given point is on the equatorial axis, the electric potential is zero
Hence option A is the correct answer.
Note: An electric dipole consists of a pair of two charges equal in magnitude (q) but opposite in nature (i.e. one is a positive charge and the other is a negative charge). These two charges are separated by a distance of length d. An electric dipole moment can be calculated as the product of charge and the distance between them.
Formula used:
Magnitude of the intensity of the electric field at a distance r on equatorial line is given as,
\[{E_e} = k \times \dfrac{p}{{{r^3}}}\]
Electric potential at the equatorial point is given as,
\[{V_e} = k \times \dfrac{p}{{{r^2}}}\]
Where p is dipole moment, \[{V_e}\] is the electric potential on the equatorial line, r is distance from dipole and k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\].
Complete step by step solution:
As we know that magnitude of the intensity of electric field at a distance r on equatorial line is,
\[{E_e} = k \times \dfrac{p}{{{r^3}}}\]
As electric potential at equatorial point is,
\[{V_e} = k \times \dfrac{p}{{{r^2}}} = 0{\rm{(cos9}}{{\rm{0}}^0} = 0)\]
For the equatorial axis of the dipole,
\[\theta = {90^0}\]
The angle \[\theta \] between the line joining the point with the centre of the dipole and the axial line of the dipole. Therefore, when the given point is on the equatorial axis, the electric potential is zero
Hence option A is the correct answer.
Note: An electric dipole consists of a pair of two charges equal in magnitude (q) but opposite in nature (i.e. one is a positive charge and the other is a negative charge). These two charges are separated by a distance of length d. An electric dipole moment can be calculated as the product of charge and the distance between them.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main