Equivalent weight of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ when it disproportionate into ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$ (mol. wt. = M) is:
A. M
B. $\dfrac{{\text{M}}}{{\text{2}}}$
C. $\dfrac{{\text{M}}}{4}$
D. $\dfrac{{{\text{3M}}}}{4}$
Answer
Verified
116.4k+ views
Hint: As we know in a chemical reaction, equivalence of a substance is explained as the amount of which combines with 1 mole of hydrogen atoms or replaces the same number of hydrogen atoms. Thus equivalent weight in grams is weight in grams of 1 equivalent.
Complete step by step answer:
In this question given that ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${\text{P}}{{\text{H}}_{\text{3}}}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {\text{P}}{{\text{H}}_{\text{3}}} \\
{{\text{P}}^ + } + 4{e^ - } \to {{\text{P}}^{3 - }} \\
$
Thus equivalent weight of $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)$ in ${\text{P}}{{\text{H}}_{\text{3}}}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{{\text{4}}} \\
$
(Here valance factor is 4)
Again, ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3} \\
{{\text{P}}^ + } - 2{e^ - } \to {{\text{P}}^{3 + }} \\
$
Thus equivalent weight of \[\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)\] in ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{2} \\
$
(Here valance factor is 2)
Now we add equivalence weight of ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ .
$\dfrac{{\text{M}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{M}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{3M}}}}{{\text{4}}}$
Thus option D is correct.
Additional Information: We know that the law of equivalence is one equivalence of an element combined with one equivalent of others. Equivalent weight of an acid in an acid base neutralization reaction is the portion of weight of 1 mole of the acid that can furnish 1 mole of hydrogen ion and equivalent weight of a base is part of weight of one mole of base that can furnish 1 mole of hydroxide ion or accept 1 mole of hydrogen ion.
Note:
As we know a redox reaction that reactant is transformed into product by simultaneous reduction reaction as well as oxidation reaction is termed as disproportionation reaction. For a reaction, say hydrogen peroxide transformed into water and oxygen. In this reaction hydrogen peroxide oxidizes and forms oxygen and it reduces and forms water.
Complete step by step answer:
In this question given that ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${\text{P}}{{\text{H}}_{\text{3}}}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {\text{P}}{{\text{H}}_{\text{3}}} \\
{{\text{P}}^ + } + 4{e^ - } \to {{\text{P}}^{3 - }} \\
$
Thus equivalent weight of $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)$ in ${\text{P}}{{\text{H}}_{\text{3}}}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{{\text{4}}} \\
$
(Here valance factor is 4)
Again, ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3} \\
{{\text{P}}^ + } - 2{e^ - } \to {{\text{P}}^{3 + }} \\
$
Thus equivalent weight of \[\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)\] in ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{2} \\
$
(Here valance factor is 2)
Now we add equivalence weight of ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ .
$\dfrac{{\text{M}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{M}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{3M}}}}{{\text{4}}}$
Thus option D is correct.
Additional Information: We know that the law of equivalence is one equivalence of an element combined with one equivalent of others. Equivalent weight of an acid in an acid base neutralization reaction is the portion of weight of 1 mole of the acid that can furnish 1 mole of hydrogen ion and equivalent weight of a base is part of weight of one mole of base that can furnish 1 mole of hydroxide ion or accept 1 mole of hydrogen ion.
Note:
As we know a redox reaction that reactant is transformed into product by simultaneous reduction reaction as well as oxidation reaction is termed as disproportionation reaction. For a reaction, say hydrogen peroxide transformed into water and oxygen. In this reaction hydrogen peroxide oxidizes and forms oxygen and it reduces and forms water.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
JEE Main Results 2025: Updates, Toppers, Scorecard, and Cut-Offs