
When ethane is burnt in excess of air, the products of combustion are:
(a)- $C$ and ${{H}_{2}}O$
(b)- $CO$ and ${{H}_{2}}O$
(c)- $C{{O}_{2}}$ and ${{H}_{2}}$
(d)-$C{{O}_{2}}$ and ${{H}_{2}}O$
Answer
133.8k+ views
Hint: The general reaction of complete combustion of alkane is ${{C}_{n}}{{H}_{2n+2}}+\left( \dfrac{3n+1}{2} \right){{O}_{2}}\to nC{{O}_{2}}+(n+1){{H}_{2}}O$. In ethane, there are 2 carbon atoms.
Complete step by step answer:
Ethane is a member of the alkane group and it has 2 carbon atoms.
On heating, alkanes readily burn in air or oxygen producing carbon dioxide ($C{{O}_{2}}$) and water (${{H}_{2}}O$). This process is called combustion.
For example, Methane of combustion forms carbon dioxide and 2 moles of water. The reaction is:
$C{{H}_{4}}+{{O}_{2}}\to C{{O}_{2}}+2{{H}_{2}}O$
The general reaction of complete oxidation of alkane is:
${{C}_{n}}{{H}_{2n+2}}+\left( \dfrac{3n+1}{2} \right){{O}_{2}}\to nC{{O}_{2}}+(n+1){{H}_{2}}O$.
So, in ethane, the n is 2. So, the reaction is:
${{C}_{2}}{{H}_{6}}+\dfrac{7}{2}{{O}_{2}}\to 2C{{O}_{2}}+3{{H}_{2}}O$.
So, the products of complete oxidation of ethane are 2 moles of carbon dioxide, and 3 moles of water.
Hence, the correct answer is an option (d)- $C{{O}_{2}}$ and${{H}_{2}}O$.
Additional information: There are 2 more forms of oxidation of alkane:
(i)- Incomplete combustion: (a)- If the combustion of alkanes is carried out in a limited supply of air, carbon monoxide is formed with unburnt carbon in the form of carbon black or soot.
$2C{{H}_{4}}+3{{O}_{2}}\to 2CO+4{{H}_{2}}O$.
(b)- When the alkanes react with steam at 1273 K in the presence of nickel as a catalyst forming a mixture of carbon monoxide and hydrogen gas, is called syngas.
$C{{H}_{4}}+{{H}_{2}}O\xrightarrow{1273K,Ni}\underset{syngas}{\mathop{CO+3{{H}_{2}}}}\,$
(ii)- Catalytic oxidation: When a mixture of methane and oxygen (9:1 by volume) at a pressure of 100 atmospheres is passed through a copper tube at 573 K, methanol is formed.
$2C{{H}_{4}}+{{O}_{2}}\xrightarrow[Cu\text{ }tube]{100atm,573K}2C{{H}_{2}}OH$.
Note: The process of complete oxidation of alkane is accompanied by the liberation of a large amount of heat, therefore, alkanes which are the constituents of LPG, gasoline, kerosene oil, and diesel are used as fuels.
Complete step by step answer:
Ethane is a member of the alkane group and it has 2 carbon atoms.
On heating, alkanes readily burn in air or oxygen producing carbon dioxide ($C{{O}_{2}}$) and water (${{H}_{2}}O$). This process is called combustion.
For example, Methane of combustion forms carbon dioxide and 2 moles of water. The reaction is:
$C{{H}_{4}}+{{O}_{2}}\to C{{O}_{2}}+2{{H}_{2}}O$
The general reaction of complete oxidation of alkane is:
${{C}_{n}}{{H}_{2n+2}}+\left( \dfrac{3n+1}{2} \right){{O}_{2}}\to nC{{O}_{2}}+(n+1){{H}_{2}}O$.
So, in ethane, the n is 2. So, the reaction is:
${{C}_{2}}{{H}_{6}}+\dfrac{7}{2}{{O}_{2}}\to 2C{{O}_{2}}+3{{H}_{2}}O$.
So, the products of complete oxidation of ethane are 2 moles of carbon dioxide, and 3 moles of water.
Hence, the correct answer is an option (d)- $C{{O}_{2}}$ and${{H}_{2}}O$.
Additional information: There are 2 more forms of oxidation of alkane:
(i)- Incomplete combustion: (a)- If the combustion of alkanes is carried out in a limited supply of air, carbon monoxide is formed with unburnt carbon in the form of carbon black or soot.
$2C{{H}_{4}}+3{{O}_{2}}\to 2CO+4{{H}_{2}}O$.
(b)- When the alkanes react with steam at 1273 K in the presence of nickel as a catalyst forming a mixture of carbon monoxide and hydrogen gas, is called syngas.
$C{{H}_{4}}+{{H}_{2}}O\xrightarrow{1273K,Ni}\underset{syngas}{\mathop{CO+3{{H}_{2}}}}\,$
(ii)- Catalytic oxidation: When a mixture of methane and oxygen (9:1 by volume) at a pressure of 100 atmospheres is passed through a copper tube at 573 K, methanol is formed.
$2C{{H}_{4}}+{{O}_{2}}\xrightarrow[Cu\text{ }tube]{100atm,573K}2C{{H}_{2}}OH$.
Note: The process of complete oxidation of alkane is accompanied by the liberation of a large amount of heat, therefore, alkanes which are the constituents of LPG, gasoline, kerosene oil, and diesel are used as fuels.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
