Answer
Verified
112.8k+ views
Hint- First use substitution method and then partial fraction method to simplify the integral.
Here we have to evaluate \[\int {\dfrac{{1 + \log x}}{{x\left( {2 + \log x} \right)\left( {3 + \log x} \right)}}} {\text{dx}}\]
So let’s substitute \[{\text{1 + logx = p}}\]
So on differentiating both the sides we have \[\left( {{\text{0 + }}\dfrac{1}{x}} \right)dx = dp\]
Let’s make this substitution back into our main integral we get
\[\int {\dfrac{p}{{x\left( {1 + p} \right)\left( {2 + p} \right)}} \times xdp} \] As \[{\text{(2 + logx)}}\]can be written as \[{\text{(1 + (1 + logx))}}\]and \[\left( {3 + \log x} \right)\]can be written as \[\left( {2 + (1 + \log x)} \right)\]
On simplifying we get
\[\int {\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}}} {\text{dp}}\]
Now let’s resolve it into partial fractions so we can write this form as
Let \[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{A}{{1 + p}} + \dfrac{B}{{2 + p}}\]……………………………. (1)
So let’s take LCM in the right side we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{A\left( {2 + p} \right) + B\left( {1 + p} \right)}}{{\left( {1 + p} \right)\left( {2 + p} \right)}}\]
Denominator in both sides will cancel it out so we get
\[{\text{p = }}A\left( {2 + p} \right) + B\left( {1 + p} \right)\]……………………………………. (2)
Now let’s put \[{\text{p = - 2}}\] so that we can find the value of B
We get
\[{\text{ - 2 = 0 - B}}\] Hence our \[{\text{B = 2}}\]………………………………………. (3)
Now we need to find A so let’s put \[{\text{p = - 1}}\] in equation (2) we get
\[{\text{ - 1 = A + 0}}\] Hence our \[{\text{A = - 1}}\]………………………………… (4)
Now let’s put equation (3) and equation (4) back into (1) we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}\]
So our integral can now be written as
\[{\text{I}} = \int {\left( {\dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}} \right){\text{ }}} {\text{dp}}\]
We can segregate this integral as
\[{\text{I = }}\int {\dfrac{{ - 1}}{{1 + p}}{\text{ dp}}} {\text{ + }}\int {\dfrac{2}{{2 + p}}} {\text{ dp}}\]
Now using the standard formula for integral of\[\int {\dfrac{{dx}}{x} = \log \left| x \right|} \], we can solve above as
\[{\text{I = - log}}\left| {1 + p} \right|{\text{ + 2log}}\left| {2 + p} \right|{\text{ + c}}\]
Let’s substitute back the value of p which was \[{\text{1 + logx}}\] we get
\[{\text{I = - log}}\left| {2 + \log x} \right| + 2\log \left| {3 + \log x} \right|{\text{ + c}}\]
Using the property of log that is \[{\text{log(A) - log(B) = log}}\left( {\dfrac{A}{B}} \right)\]and \[{\text{nlog(x) = log(x}}{{\text{)}}^n}\]
\[{\text{I = log}}\left| {\dfrac{{{{\left( {\log x + 3} \right)}^2}}}{{\log x + 2}}} \right|{\text{ + c}}\]
Note- All such type of problems are based upon the concept of evaluation by substitution, whenever we see some terms in the integral that are related or can be converted into one another in numerator or in denominator then we can use the basic term and substitute it to some quantity in order to simplify the integral.
Here we have to evaluate \[\int {\dfrac{{1 + \log x}}{{x\left( {2 + \log x} \right)\left( {3 + \log x} \right)}}} {\text{dx}}\]
So let’s substitute \[{\text{1 + logx = p}}\]
So on differentiating both the sides we have \[\left( {{\text{0 + }}\dfrac{1}{x}} \right)dx = dp\]
Let’s make this substitution back into our main integral we get
\[\int {\dfrac{p}{{x\left( {1 + p} \right)\left( {2 + p} \right)}} \times xdp} \] As \[{\text{(2 + logx)}}\]can be written as \[{\text{(1 + (1 + logx))}}\]and \[\left( {3 + \log x} \right)\]can be written as \[\left( {2 + (1 + \log x)} \right)\]
On simplifying we get
\[\int {\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}}} {\text{dp}}\]
Now let’s resolve it into partial fractions so we can write this form as
Let \[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{A}{{1 + p}} + \dfrac{B}{{2 + p}}\]……………………………. (1)
So let’s take LCM in the right side we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{A\left( {2 + p} \right) + B\left( {1 + p} \right)}}{{\left( {1 + p} \right)\left( {2 + p} \right)}}\]
Denominator in both sides will cancel it out so we get
\[{\text{p = }}A\left( {2 + p} \right) + B\left( {1 + p} \right)\]……………………………………. (2)
Now let’s put \[{\text{p = - 2}}\] so that we can find the value of B
We get
\[{\text{ - 2 = 0 - B}}\] Hence our \[{\text{B = 2}}\]………………………………………. (3)
Now we need to find A so let’s put \[{\text{p = - 1}}\] in equation (2) we get
\[{\text{ - 1 = A + 0}}\] Hence our \[{\text{A = - 1}}\]………………………………… (4)
Now let’s put equation (3) and equation (4) back into (1) we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}\]
So our integral can now be written as
\[{\text{I}} = \int {\left( {\dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}} \right){\text{ }}} {\text{dp}}\]
We can segregate this integral as
\[{\text{I = }}\int {\dfrac{{ - 1}}{{1 + p}}{\text{ dp}}} {\text{ + }}\int {\dfrac{2}{{2 + p}}} {\text{ dp}}\]
Now using the standard formula for integral of\[\int {\dfrac{{dx}}{x} = \log \left| x \right|} \], we can solve above as
\[{\text{I = - log}}\left| {1 + p} \right|{\text{ + 2log}}\left| {2 + p} \right|{\text{ + c}}\]
Let’s substitute back the value of p which was \[{\text{1 + logx}}\] we get
\[{\text{I = - log}}\left| {2 + \log x} \right| + 2\log \left| {3 + \log x} \right|{\text{ + c}}\]
Using the property of log that is \[{\text{log(A) - log(B) = log}}\left( {\dfrac{A}{B}} \right)\]and \[{\text{nlog(x) = log(x}}{{\text{)}}^n}\]
\[{\text{I = log}}\left| {\dfrac{{{{\left( {\log x + 3} \right)}^2}}}{{\log x + 2}}} \right|{\text{ + c}}\]
Note- All such type of problems are based upon the concept of evaluation by substitution, whenever we see some terms in the integral that are related or can be converted into one another in numerator or in denominator then we can use the basic term and substitute it to some quantity in order to simplify the integral.
Recently Updated Pages
IIT JEE Main Maths 2025: Syllabus, Important Chapters, Weightage
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses
Difference Between Distance and Displacement: JEE Main 2024
Difference Between CNG and LPG: JEE Main 2024
Difference between soap and detergent
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Class 12 Maths Revision Notes for Three Dimensional Geometry of Chapter 11
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
NCERT Solutions for Class 12 Maths In Hindi Chapter 13 Probability