
Evaluate the definite integral given as \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\].
Answer
135.3k+ views
Hint: We start solving the problems by recalling the properties of modulus function and we write functions for $\left| x-1 \right|$, $\left| x-2 \right|$ and $\left| x-3 \right|$ in the intervals that were present as limits for definite integral. We divide the definite integral into two or more parts based on the modulus functions obtained. We substitute the functions obtained in the place of modulus functions in integral. Now, we do the integration and substitute the limits to get the required value.
Complete step-by-step solution:
According to the problem, we need to find the value of the definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] ------(1).
Let us first learn about the properties of modulus function. We know that the value of $\left| x-a \right|$ varies as \[\left| x-a \right|=\left\{ \begin{matrix}
\left( x-a \right)\text{, for x> a} \\
0\text{, for x=a} \\
-\left( x-a \right)\text{, for x< a} \\
\end{matrix} \right.\].
Using the properties of $\left| x-a \right|$, we check the variations of functions $\left| x-1 \right|$, $\left| x-2 \right|$ and $\left| x-3 \right|$ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 1 and 3 i.e., $1< x< 3$.
We find the variation in function for $\left| x-1 \right|$ in the interval $1< x <3$.
So, the function $\left| x-1 \right|$ is written as \[\left| x-1 \right|=\left\{ \left( x-1 \right)\text{, for }1< x <3 \right.\] ---------(2).
Now, we find the variation in function for $\left| x-2 \right|$ in the interval $1< x <3$.
So, the function $\left| x-2 \right|$ is written as \[\left| x-2 \right|=\left\{ \begin{matrix}
-\left( x-2 \right),\text{ for }1< x< 2 \\
\left( x-2 \right),\text{ for }2< x< 3 \\
\end{matrix} \right.\] ------(3).
Now, we find the variation in function for $\left| x-3 \right|$ in the interval $1< x <3$.
So, the function $\left| x-3 \right|$ is written as \[\left| x-3 \right|=\left\{ -\left( x-3 \right),\text{ for }1< x <3 \right.\] ---(4).
We know that for $a< bNow, we divide the given definite integral into two intervals as shown below:
\[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx+\int\limits_{2}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\].
Now, we use the functions that we have obtained in equation (2), (3), and (4) in the given definite integral.
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left( x-1 \right)-\left( x-2 \right)-\left( x-3 \right) \right]}dx+\int\limits_{2}^{3}{\left[ \left( x-1 \right)+\left( x-2 \right)-\left( x-3 \right) \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ x-1-x+2-x+3 \right]}dx+\int\limits_{2}^{3}{\left[ x-1+x-2-x+3 \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ -x+4 \right]}dx+\int\limits_{2}^{3}{\left[ x \right]}dx\] --------(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left. \dfrac{-{{\left( 4-x \right)}^{2}}}{2} \right|_{1}^{2}+\left. \dfrac{{{x}^{2}}}{2} \right|_{2}^{3}\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-{{\left( 4-2 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 4-1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{3}^{2}}}{2} \right)-\left( \dfrac{{{2}^{2}}}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4}{2} \right)+\left( \dfrac{9}{2} \right)+\left( \dfrac{9}{2} \right)-\left( \dfrac{4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4+9+9-4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{10}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=5\].
$\therefore$We have got the value of definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] as 5.
Note: We should not take $\left[ { } \right]$ as greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 1 to 3 as the functions are changing. We should not make mistakes or confuse with the sign changes that were present while integrating.
Complete step-by-step solution:
According to the problem, we need to find the value of the definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] ------(1).
Let us first learn about the properties of modulus function. We know that the value of $\left| x-a \right|$ varies as \[\left| x-a \right|=\left\{ \begin{matrix}
\left( x-a \right)\text{, for x> a} \\
0\text{, for x=a} \\
-\left( x-a \right)\text{, for x< a} \\
\end{matrix} \right.\].
Using the properties of $\left| x-a \right|$, we check the variations of functions $\left| x-1 \right|$, $\left| x-2 \right|$ and $\left| x-3 \right|$ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 1 and 3 i.e., $1< x< 3$.
We find the variation in function for $\left| x-1 \right|$ in the interval $1< x <3$.
So, the function $\left| x-1 \right|$ is written as \[\left| x-1 \right|=\left\{ \left( x-1 \right)\text{, for }1< x <3 \right.\] ---------(2).
Now, we find the variation in function for $\left| x-2 \right|$ in the interval $1< x <3$.
So, the function $\left| x-2 \right|$ is written as \[\left| x-2 \right|=\left\{ \begin{matrix}
-\left( x-2 \right),\text{ for }1< x< 2 \\
\left( x-2 \right),\text{ for }2< x< 3 \\
\end{matrix} \right.\] ------(3).
Now, we find the variation in function for $\left| x-3 \right|$ in the interval $1< x <3$.
So, the function $\left| x-3 \right|$ is written as \[\left| x-3 \right|=\left\{ -\left( x-3 \right),\text{ for }1< x <3 \right.\] ---(4).
We know that for $a< b
\[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx+\int\limits_{2}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\].
Now, we use the functions that we have obtained in equation (2), (3), and (4) in the given definite integral.
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left( x-1 \right)-\left( x-2 \right)-\left( x-3 \right) \right]}dx+\int\limits_{2}^{3}{\left[ \left( x-1 \right)+\left( x-2 \right)-\left( x-3 \right) \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ x-1-x+2-x+3 \right]}dx+\int\limits_{2}^{3}{\left[ x-1+x-2-x+3 \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ -x+4 \right]}dx+\int\limits_{2}^{3}{\left[ x \right]}dx\] --------(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left. \dfrac{-{{\left( 4-x \right)}^{2}}}{2} \right|_{1}^{2}+\left. \dfrac{{{x}^{2}}}{2} \right|_{2}^{3}\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-{{\left( 4-2 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 4-1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{3}^{2}}}{2} \right)-\left( \dfrac{{{2}^{2}}}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4}{2} \right)+\left( \dfrac{9}{2} \right)+\left( \dfrac{9}{2} \right)-\left( \dfrac{4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4+9+9-4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{10}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=5\].
$\therefore$We have got the value of definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] as 5.
Note: We should not take $\left[ { } \right]$ as greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 1 to 3 as the functions are changing. We should not make mistakes or confuse with the sign changes that were present while integrating.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Functional Equations - Detailed Explanation with Methods for JEE
