Answer
Verified
112.8k+ views
Hint: Kicked football forms a projected motion, therefore we define horizontal range;
Horizontal range of a projectile is the distance from the point of projection to the point where the projectile comes back to the plane of projection.
Formula for horizontal range is:
$R = \dfrac{{{v^2}\sin 2\theta }}{g}$ (v is the velocity, g is the gravitational acceleration, $\theta $ is the angle at which the object is projected) which is directly proportional to the velocity of the object being projected.
Complete step by step solution:
Let us define Horizontal range and horizontal component of velocity in detail.
It is the total horizontal distance from the point of projection to the point where the projectile comes back to the plane of projection. It is denoted by R;
In order to calculate horizontal range R, we shall consider horizontal motion of the projectile. The horizontal motion is uniform. It takes place with constant velocity of horizontal component $v\cos \theta $.
$R = v\cos \theta \times $ time of flight
where time of flight is given by;
$T = \dfrac{{2u\sin \theta }}{g}$
Therefore horizontal range is given by:
$R = v\cos \theta \times \dfrac{{2v\sin \theta }}{g}$.....................1
Component of horizontal velocity: Horizontal component of the velocity is the component of the velocity at which the velocity makes angle of projection it is given as;
$v\cos \theta $, which is directly proportional to horizontal range.
In the figure of the question, the fourth path of the kicked football has the maximum range, thus the fourth path of the football has the highest component of the horizontal velocity, then third, second and first.
Note: Examples of the objects of which shows the projectile motion are: a bomb released from a level flight, a bullet fired from a gun, an arrow released from bow, a javelin thrown by athlete. In all these motions we must neglect the resistance made by air and rotation of earth and the effect due to curvature of earth.
Horizontal range of a projectile is the distance from the point of projection to the point where the projectile comes back to the plane of projection.
Formula for horizontal range is:
$R = \dfrac{{{v^2}\sin 2\theta }}{g}$ (v is the velocity, g is the gravitational acceleration, $\theta $ is the angle at which the object is projected) which is directly proportional to the velocity of the object being projected.
Complete step by step solution:
Let us define Horizontal range and horizontal component of velocity in detail.
It is the total horizontal distance from the point of projection to the point where the projectile comes back to the plane of projection. It is denoted by R;
In order to calculate horizontal range R, we shall consider horizontal motion of the projectile. The horizontal motion is uniform. It takes place with constant velocity of horizontal component $v\cos \theta $.
$R = v\cos \theta \times $ time of flight
where time of flight is given by;
$T = \dfrac{{2u\sin \theta }}{g}$
Therefore horizontal range is given by:
$R = v\cos \theta \times \dfrac{{2v\sin \theta }}{g}$.....................1
Component of horizontal velocity: Horizontal component of the velocity is the component of the velocity at which the velocity makes angle of projection it is given as;
$v\cos \theta $, which is directly proportional to horizontal range.
In the figure of the question, the fourth path of the kicked football has the maximum range, thus the fourth path of the football has the highest component of the horizontal velocity, then third, second and first.
Note: Examples of the objects of which shows the projectile motion are: a bomb released from a level flight, a bullet fired from a gun, an arrow released from bow, a javelin thrown by athlete. In all these motions we must neglect the resistance made by air and rotation of earth and the effect due to curvature of earth.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
Charging and Discharging of Capacitor
Displacement-Time Graph and Velocity-Time Graph for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
Oscillations Class 11 Notes CBSE Physics Chapter 13 (Free PDF Download)
Thermal Properties of Matter Class 11 Notes CBSE Physics Chapter 10 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane