
Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to the initial horizontal velocity component, highest first.

Answer
139.5k+ views
Hint: Kicked football forms a projected motion, therefore we define horizontal range;
Horizontal range of a projectile is the distance from the point of projection to the point where the projectile comes back to the plane of projection.
Formula for horizontal range is:
$R = \dfrac{{{v^2}\sin 2\theta }}{g}$ (v is the velocity, g is the gravitational acceleration, $\theta $ is the angle at which the object is projected) which is directly proportional to the velocity of the object being projected.
Complete step by step solution:
Let us define Horizontal range and horizontal component of velocity in detail.
It is the total horizontal distance from the point of projection to the point where the projectile comes back to the plane of projection. It is denoted by R;
In order to calculate horizontal range R, we shall consider horizontal motion of the projectile. The horizontal motion is uniform. It takes place with constant velocity of horizontal component $v\cos \theta $.
$R = v\cos \theta \times $ time of flight
where time of flight is given by;
$T = \dfrac{{2u\sin \theta }}{g}$
Therefore horizontal range is given by:
$R = v\cos \theta \times \dfrac{{2v\sin \theta }}{g}$.....................1
Component of horizontal velocity: Horizontal component of the velocity is the component of the velocity at which the velocity makes angle of projection it is given as;
$v\cos \theta $, which is directly proportional to horizontal range.
In the figure of the question, the fourth path of the kicked football has the maximum range, thus the fourth path of the football has the highest component of the horizontal velocity, then third, second and first.
Note: Examples of the objects of which shows the projectile motion are: a bomb released from a level flight, a bullet fired from a gun, an arrow released from bow, a javelin thrown by athlete. In all these motions we must neglect the resistance made by air and rotation of earth and the effect due to curvature of earth.
Horizontal range of a projectile is the distance from the point of projection to the point where the projectile comes back to the plane of projection.
Formula for horizontal range is:
$R = \dfrac{{{v^2}\sin 2\theta }}{g}$ (v is the velocity, g is the gravitational acceleration, $\theta $ is the angle at which the object is projected) which is directly proportional to the velocity of the object being projected.
Complete step by step solution:
Let us define Horizontal range and horizontal component of velocity in detail.
It is the total horizontal distance from the point of projection to the point where the projectile comes back to the plane of projection. It is denoted by R;
In order to calculate horizontal range R, we shall consider horizontal motion of the projectile. The horizontal motion is uniform. It takes place with constant velocity of horizontal component $v\cos \theta $.
$R = v\cos \theta \times $ time of flight
where time of flight is given by;
$T = \dfrac{{2u\sin \theta }}{g}$
Therefore horizontal range is given by:
$R = v\cos \theta \times \dfrac{{2v\sin \theta }}{g}$.....................1
Component of horizontal velocity: Horizontal component of the velocity is the component of the velocity at which the velocity makes angle of projection it is given as;
$v\cos \theta $, which is directly proportional to horizontal range.
In the figure of the question, the fourth path of the kicked football has the maximum range, thus the fourth path of the football has the highest component of the horizontal velocity, then third, second and first.
Note: Examples of the objects of which shows the projectile motion are: a bomb released from a level flight, a bullet fired from a gun, an arrow released from bow, a javelin thrown by athlete. In all these motions we must neglect the resistance made by air and rotation of earth and the effect due to curvature of earth.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
