
Find gof and fog if $f:\mathbb{R}\to \mathbb{R}$ and $g:\mathbb{R}\to \mathbb{R}$ are given by f(x) = cosx and $g\left( x \right) = 3{{x}^{2}}$. Show that $fog\left( x \right)\ne gof\left(x \right)$.
Answer
141.9k+ views
Hint: In order to prove that the two functions are not equal we need to find a value of x for which the two functions give different values. Hence first construct these functions and hence find a value of x for which fog and gof give different values. Hence prove that the functions are not equal.
Complete step-by-step solution -
Two functions f and g are not equal if Domain of f and Domain of g are different or Range of f and Range of g are different or there exists a value of x for which f(x) is not equal to g(x).
Consider $f\left( x \right)=\cos x$ and $g\left( x \right)=3{{x}^{2}}$
Now we have $fog\left( x \right)=f\left( 3{{x}^{2}} \right)=\cos \left( 3{{x}^{2}} \right)$
We have Domain of fog = R
Range of fog =[-1,1]
$gof\left( x \right)=g\left( \cos x \right)=3{{\cos }^{2}}x$
We have Domain of gof = R
Range of gof = [0,3]
Since Range of gof is not equal to range of fog, the two functions are not equal. Hence we have
$fog\ne gof$.
Note:[1] Finding the range
$\begin{align}
& -1\le \cos x\le 1 \\
& \Rightarrow 0\le {{\cos }^{2}}x\le 1 \\
& \Rightarrow 0\le 3{{\cos }^{2}}x\le 3 \\
\end{align}$
Hence Range of gof(x) is [0,3]
[2] This example serves as a proof that composition of two functions is not commutative, i.e. in general fog(x) is not the same as gof(x).
Graph of fog(x)

Graph of gof(x)

As is evident from the graphs of the two functions, we have the two functions are not equal.
Complete step-by-step solution -
Two functions f and g are not equal if Domain of f and Domain of g are different or Range of f and Range of g are different or there exists a value of x for which f(x) is not equal to g(x).
Consider $f\left( x \right)=\cos x$ and $g\left( x \right)=3{{x}^{2}}$
Now we have $fog\left( x \right)=f\left( 3{{x}^{2}} \right)=\cos \left( 3{{x}^{2}} \right)$
We have Domain of fog = R
Range of fog =[-1,1]
$gof\left( x \right)=g\left( \cos x \right)=3{{\cos }^{2}}x$
We have Domain of gof = R
Range of gof = [0,3]
Since Range of gof is not equal to range of fog, the two functions are not equal. Hence we have
$fog\ne gof$.
Note:[1] Finding the range
$\begin{align}
& -1\le \cos x\le 1 \\
& \Rightarrow 0\le {{\cos }^{2}}x\le 1 \\
& \Rightarrow 0\le 3{{\cos }^{2}}x\le 3 \\
\end{align}$
Hence Range of gof(x) is [0,3]
[2] This example serves as a proof that composition of two functions is not commutative, i.e. in general fog(x) is not the same as gof(x).
Graph of fog(x)
Graph of gof(x)
As is evident from the graphs of the two functions, we have the two functions are not equal.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Electrical Field of Charged Spherical Shell - JEE
