
Find gof and fog if $f:\mathbb{R}\to \mathbb{R}$ and $g:\mathbb{R}\to \mathbb{R}$ are given by f(x) = cosx and $g\left( x \right) = 3{{x}^{2}}$. Show that $fog\left( x \right)\ne gof\left(x \right)$.
Answer
232.8k+ views
Hint: In order to prove that the two functions are not equal we need to find a value of x for which the two functions give different values. Hence first construct these functions and hence find a value of x for which fog and gof give different values. Hence prove that the functions are not equal.
Complete step-by-step solution -
Two functions f and g are not equal if Domain of f and Domain of g are different or Range of f and Range of g are different or there exists a value of x for which f(x) is not equal to g(x).
Consider $f\left( x \right)=\cos x$ and $g\left( x \right)=3{{x}^{2}}$
Now we have $fog\left( x \right)=f\left( 3{{x}^{2}} \right)=\cos \left( 3{{x}^{2}} \right)$
We have Domain of fog = R
Range of fog =[-1,1]
$gof\left( x \right)=g\left( \cos x \right)=3{{\cos }^{2}}x$
We have Domain of gof = R
Range of gof = [0,3]
Since Range of gof is not equal to range of fog, the two functions are not equal. Hence we have
$fog\ne gof$.
Note:[1] Finding the range
$\begin{align}
& -1\le \cos x\le 1 \\
& \Rightarrow 0\le {{\cos }^{2}}x\le 1 \\
& \Rightarrow 0\le 3{{\cos }^{2}}x\le 3 \\
\end{align}$
Hence Range of gof(x) is [0,3]
[2] This example serves as a proof that composition of two functions is not commutative, i.e. in general fog(x) is not the same as gof(x).
Graph of fog(x)

Graph of gof(x)

As is evident from the graphs of the two functions, we have the two functions are not equal.
Complete step-by-step solution -
Two functions f and g are not equal if Domain of f and Domain of g are different or Range of f and Range of g are different or there exists a value of x for which f(x) is not equal to g(x).
Consider $f\left( x \right)=\cos x$ and $g\left( x \right)=3{{x}^{2}}$
Now we have $fog\left( x \right)=f\left( 3{{x}^{2}} \right)=\cos \left( 3{{x}^{2}} \right)$
We have Domain of fog = R
Range of fog =[-1,1]
$gof\left( x \right)=g\left( \cos x \right)=3{{\cos }^{2}}x$
We have Domain of gof = R
Range of gof = [0,3]
Since Range of gof is not equal to range of fog, the two functions are not equal. Hence we have
$fog\ne gof$.
Note:[1] Finding the range
$\begin{align}
& -1\le \cos x\le 1 \\
& \Rightarrow 0\le {{\cos }^{2}}x\le 1 \\
& \Rightarrow 0\le 3{{\cos }^{2}}x\le 3 \\
\end{align}$
Hence Range of gof(x) is [0,3]
[2] This example serves as a proof that composition of two functions is not commutative, i.e. in general fog(x) is not the same as gof(x).
Graph of fog(x)
Graph of gof(x)
As is evident from the graphs of the two functions, we have the two functions are not equal.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

