
Find (i) Radius of gyration (ii) Moment of inertia of a rod of mass ${{100g}}$ and length ${{100cm}}$ about an axis passing through its center and to it length.
Answer
127.5k+ views
Hint: Radius of gyration about a given axis is the perpendicular distance. From the axis to a point where if whole mass of the system/body is supposed to be concentrated the body hall have same moment of inertia as it has with actual distribution of mass and moment of inertia of a body is the quantity which measure rotational inertia of the body
Formula used:
${{{K}}_{{c}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{{12}}}}$ , Where ${{{K}}_{{c}}}$ is radius of gyration about center of road, ${{L,}}$ is length of rod.
${{{I}}_{{c}}}{{ = }}\dfrac{{{{M}}{{{L}}^{{2}}}}}{{{{12}}}}$, Where ${{{I}}_{{c}}}$ is moment of inertia about the axis passing through its center.
${{{K}}_{{e}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{3}}}{{,}}$ Where ${{{K}}_{{e}}}$ is radius of gyration of the rod about end, ${{L}}$ is length of rod.
$I_e$ = $\dfrac{ML^2}{3}$ Where ${{{I}}_{{e}}}$ is moment of inertia of rod about its length, ${{M}}$ is mass of rod, ${{L}}$ is length of rod.
Complete step by step solution:
In this question, it is given that,
Mass of rod ${{M = 0}}{{.1Kg}}$
Length of rod ${{L = 0}}{{.1m}}$
As we know, moment of inertia about the center is given by ${{{I}}_{{c}}}{{ = }}\dfrac{{{{M}}{{{L}}^{{2}}}}}{{{{12}}}}{{\_\_}}\left( {{1}} \right)$
By substituting the values of ${{M}}$ and ${{L}}$ in $\left( 1 \right)$ we get
${{{I}}_{{c}}}{{ = }}\dfrac{{{{0}}{{.1 \times }}{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{{12}}}}{{ = }}{{8}}{{.3 \times 1}}{{{0}}^{{{ - 5}}}}{{Kg}}{{{m}}^{{2}}}$
Also we know Radius of gyration of a rod about its center is given as
${{{K}}_{{c}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{{12}}}},$ by substituting values in this equation we get
${{{K}}_{{c}}}{{ = }}\dfrac{{{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{{12}}}}{{ = }}{{8}}{{.3 \times 1}}{{{0}}^{{{ - 5}}}}{{{m}}^{{2}}}$
Further we also, know that radius of gyration about the end of rod is given as ${{{K}}_{{e}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{3}}}$
By substituting we get, ${{{K}}_{{e}}}{{ = }}\dfrac{{{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{3}}}{{ = }}{{3}}{{.3 \times 1}}{{{0}}^{{{ - 3}}}}{{{m}}^{{2}}}$
And moment of inertia about end of rod is given as ${{{I}}_{{e}}}{{ = }}\dfrac{{{{M}}{{{L}}^{{2}}}}}{{{3}}}{{ = }}\dfrac{{\left( {{{0}}{{.1}}} \right){{ \times }}{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{3}}}{{ = }}{{3}}{{.3 \times 1}}{{{0}}^{{{ - 4}}}}{{Kg}}{{{m}}^{{2}}}$
Note: In this question the thickness of the rod is assumed to be negligible. Otherwise the results will be similar to that of a cylinder. The radius of gyration of a body is referred to as the radial distance from the rotational axis at which the entire body mass is supposed to be concentrated.
Formula used:
${{{K}}_{{c}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{{12}}}}$ , Where ${{{K}}_{{c}}}$ is radius of gyration about center of road, ${{L,}}$ is length of rod.
${{{I}}_{{c}}}{{ = }}\dfrac{{{{M}}{{{L}}^{{2}}}}}{{{{12}}}}$, Where ${{{I}}_{{c}}}$ is moment of inertia about the axis passing through its center.
${{{K}}_{{e}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{3}}}{{,}}$ Where ${{{K}}_{{e}}}$ is radius of gyration of the rod about end, ${{L}}$ is length of rod.
$I_e$ = $\dfrac{ML^2}{3}$ Where ${{{I}}_{{e}}}$ is moment of inertia of rod about its length, ${{M}}$ is mass of rod, ${{L}}$ is length of rod.
Complete step by step solution:
In this question, it is given that,
Mass of rod ${{M = 0}}{{.1Kg}}$
Length of rod ${{L = 0}}{{.1m}}$
As we know, moment of inertia about the center is given by ${{{I}}_{{c}}}{{ = }}\dfrac{{{{M}}{{{L}}^{{2}}}}}{{{{12}}}}{{\_\_}}\left( {{1}} \right)$
By substituting the values of ${{M}}$ and ${{L}}$ in $\left( 1 \right)$ we get
${{{I}}_{{c}}}{{ = }}\dfrac{{{{0}}{{.1 \times }}{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{{12}}}}{{ = }}{{8}}{{.3 \times 1}}{{{0}}^{{{ - 5}}}}{{Kg}}{{{m}}^{{2}}}$
Also we know Radius of gyration of a rod about its center is given as
${{{K}}_{{c}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{{12}}}},$ by substituting values in this equation we get
${{{K}}_{{c}}}{{ = }}\dfrac{{{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{{12}}}}{{ = }}{{8}}{{.3 \times 1}}{{{0}}^{{{ - 5}}}}{{{m}}^{{2}}}$
Further we also, know that radius of gyration about the end of rod is given as ${{{K}}_{{e}}}{{ = }}\dfrac{{{{{L}}^{{2}}}}}{{{3}}}$
By substituting we get, ${{{K}}_{{e}}}{{ = }}\dfrac{{{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{3}}}{{ = }}{{3}}{{.3 \times 1}}{{{0}}^{{{ - 3}}}}{{{m}}^{{2}}}$
And moment of inertia about end of rod is given as ${{{I}}_{{e}}}{{ = }}\dfrac{{{{M}}{{{L}}^{{2}}}}}{{{3}}}{{ = }}\dfrac{{\left( {{{0}}{{.1}}} \right){{ \times }}{{\left( {{{0}}{{.1}}} \right)}^{{2}}}}}{{{3}}}{{ = }}{{3}}{{.3 \times 1}}{{{0}}^{{{ - 4}}}}{{Kg}}{{{m}}^{{2}}}$
Note: In this question the thickness of the rod is assumed to be negligible. Otherwise the results will be similar to that of a cylinder. The radius of gyration of a body is referred to as the radial distance from the rotational axis at which the entire body mass is supposed to be concentrated.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic
