Find that value of $R$ for which the net resistance of the circuit is 18 ohms.
A) $8\Omega $
B) $10\Omega $
C) $16\Omega $
D) $24\Omega $
Answer
Verified
116.4k+ views
Hint: The value of the resistance $R$ can be obtained by reducing the circuit. The resistance of two resistors in series will be the sum of their resistances and the resistance of two resistors connected in parallel will be the sum of the reciprocal of their resistances.
Formula Used:
1) The effective resistance of two resistors in series is given by, ${R_{eff}} = {R_1} + {R_2}$ where ${R_1}$ and ${R_2}$ are the resistances of the two resistors.
2) The effective resistance of two resistors in parallel is given by, ${R_{eff}} = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$ where ${R_1}$ and ${R_2}$ are the resistances of the two resistors.
Complete step by step answer:
Step 1: Sketch the arrangement of the resistors and mark each junction.
In the above figure, the point of contact between two resistors is marked.
The net resistance of the above circuit is given to be ${R_{net}} = 18\Omega $
Step 2: Reduce loop IDHG.
In the loop IDHG, the two resistors are connected in parallel. Then the two resistors can be replaced by their effective resistance given by, ${R_{eff}} = \dfrac{{{R_{ID}}{R_{GH}}}}{{{R_{ID}} + {R_{GH}}}} = \dfrac{{10 \times 10}}{{10 + 10}} = 5\Omega $
Then the reduced circuit is given below.
Step 3: Reduce the resistors connected across ID and DE.
The two resistors connected across ID and DE are in series. So these resistors can be replaced by their effective resistance given by, ${R_{eff}} = {R_{ID}} + {R_{DE}} = 5 + 10 = 15\Omega $
Then the reduced circuit is given below.
Step 4: Reduce the circuit for the resistors in the loop DEFB.
The two resistors connect across DE and FB are connected in parallel and hence they are replaced by their effective resistance given by, ${R_{eff}} = \dfrac{{{R_{DE}}{R_{FB}}}}{{{R_{DE}} + {R_{FB}}}} = \dfrac{{15 \times 10}}{{15 + 10}} = 6\Omega $
The reduced circuit is given below.
Step 5: Reduce the resistors connected across CF and FB.
The two resistors connected across CF and FB are in series. So these resistors can be replaced by their effective resistance given by, ${R_{eff}} = {R_{CF}} + {R_{FB}} = 10 + 6 = 16\Omega $
Then the reduced circuit is given below.
Step 6: Reduce the circuit for the resistors connected across CB.
The two resistors connect across CB are connected in parallel and hence they are replaced by their effective resistance given by, ${R_{eff}} = \dfrac{{16R}}{{R + 16}}\Omega $
The reduced circuit is given below.
Now the net resistance will be the sum of the above two resistances as they are connected in series.
i.e., ${R_{net}} = 10 + \dfrac{{16R}}{{R + 16}} = 18\Omega $
$ \Rightarrow \dfrac{{16R}}{{R + 16}} = 8$
On cross-multiplying we get, $16R = 8R + 128$
$ \Rightarrow R = 16\Omega $
Thus the value of the resistance is $R = 16\Omega $ .
Hence the correct option is C.
Note: Two resistors are said to be connected in parallel if both of their ends are connected to each other. This type of connection is first observed in the loop IDHG. In this loop, both the resistors have the same value of resistance and so the effective resistance of that loop can also be obtained as ${R_{eff}} = \dfrac{{{R_{ID}}}}{2} = \dfrac{{10}}{2} = 5\Omega $ or ${R_{eff}} = \dfrac{{{R_{GH}}}}{2} = \dfrac{{10}}{2} = 5\Omega $. Two resistors are said to be connected in series if one of their ends is connected together.
Formula Used:
1) The effective resistance of two resistors in series is given by, ${R_{eff}} = {R_1} + {R_2}$ where ${R_1}$ and ${R_2}$ are the resistances of the two resistors.
2) The effective resistance of two resistors in parallel is given by, ${R_{eff}} = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$ where ${R_1}$ and ${R_2}$ are the resistances of the two resistors.
Complete step by step answer:
Step 1: Sketch the arrangement of the resistors and mark each junction.
In the above figure, the point of contact between two resistors is marked.
The net resistance of the above circuit is given to be ${R_{net}} = 18\Omega $
Step 2: Reduce loop IDHG.
In the loop IDHG, the two resistors are connected in parallel. Then the two resistors can be replaced by their effective resistance given by, ${R_{eff}} = \dfrac{{{R_{ID}}{R_{GH}}}}{{{R_{ID}} + {R_{GH}}}} = \dfrac{{10 \times 10}}{{10 + 10}} = 5\Omega $
Then the reduced circuit is given below.
Step 3: Reduce the resistors connected across ID and DE.
The two resistors connected across ID and DE are in series. So these resistors can be replaced by their effective resistance given by, ${R_{eff}} = {R_{ID}} + {R_{DE}} = 5 + 10 = 15\Omega $
Then the reduced circuit is given below.
Step 4: Reduce the circuit for the resistors in the loop DEFB.
The two resistors connect across DE and FB are connected in parallel and hence they are replaced by their effective resistance given by, ${R_{eff}} = \dfrac{{{R_{DE}}{R_{FB}}}}{{{R_{DE}} + {R_{FB}}}} = \dfrac{{15 \times 10}}{{15 + 10}} = 6\Omega $
The reduced circuit is given below.
Step 5: Reduce the resistors connected across CF and FB.
The two resistors connected across CF and FB are in series. So these resistors can be replaced by their effective resistance given by, ${R_{eff}} = {R_{CF}} + {R_{FB}} = 10 + 6 = 16\Omega $
Then the reduced circuit is given below.
Step 6: Reduce the circuit for the resistors connected across CB.
The two resistors connect across CB are connected in parallel and hence they are replaced by their effective resistance given by, ${R_{eff}} = \dfrac{{16R}}{{R + 16}}\Omega $
The reduced circuit is given below.
Now the net resistance will be the sum of the above two resistances as they are connected in series.
i.e., ${R_{net}} = 10 + \dfrac{{16R}}{{R + 16}} = 18\Omega $
$ \Rightarrow \dfrac{{16R}}{{R + 16}} = 8$
On cross-multiplying we get, $16R = 8R + 128$
$ \Rightarrow R = 16\Omega $
Thus the value of the resistance is $R = 16\Omega $ .
Hence the correct option is C.
Note: Two resistors are said to be connected in parallel if both of their ends are connected to each other. This type of connection is first observed in the loop IDHG. In this loop, both the resistors have the same value of resistance and so the effective resistance of that loop can also be obtained as ${R_{eff}} = \dfrac{{{R_{ID}}}}{2} = \dfrac{{10}}{2} = 5\Omega $ or ${R_{eff}} = \dfrac{{{R_{GH}}}}{2} = \dfrac{{10}}{2} = 5\Omega $. Two resistors are said to be connected in series if one of their ends is connected together.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics