
Find the increase in pressure required to decrease the volume of a water sample by $0.01\% $. Bulk modulus of water = $2.1 \times {10^9}{{N}}{{{m}}^{ - 2}}$.
Answer
232.8k+ views
Hint: Bulk modulus is the ability of a material to withstand volumetric changes due to compressive forces applied to it. The bulk modulus of a material can be defined as the ratio of the volumetric stress of a material to its volumetric strain.
Formula used:
$\Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Complete step by step solution:
The bulk modulus of a material is a measure of how resistant the particular material is to compression. It can also be called the incompressibility of a material. Bulk modulus is defined as the proportion of volumetric stress of a material related to its volumetric strain when the deformation of the material is within its elastic limit. The symbol used for Bulk modulus is ${{K}}$ and the dimensions are of force per unit area and the S.I unit of Bulk modulus is ${{N/}}{{{m}}^{ - 2}}$.
Bulk modulus of a material is
${{K = - }}$$\Delta {{P}}\dfrac{{{V}}}{{\Delta {{V}}}}$,
where $\Delta {{P}}$is the change in pressure of force applied per unit area,
$\Delta {{V}}$ is the change in volume of the material due to compression and
$V$ is the initial volume of the material. Therefore,
$\Rightarrow \Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Since the decrease of the water sample is given as $0.01\% $
$\Rightarrow \Delta {{V = }} - \dfrac{{0.01}}{{100}} \times {{V}}$
$ \Rightarrow \dfrac{{\Delta {{V}}}}{{{V}}} = - 0.0001$
On putting the values in the equation, we get:
$\Rightarrow \Delta {{P = 0}}{{.0001}} \times {{2}}{{.1}} \times {{1}}{{{0}}^9}{{N/}}{{{m}}^2}$
$ \Rightarrow \Delta {{P = 2}}{{.1}} \times {{1}}{{{0}}^5}{{N/}}{{{m}}^2}$
Therefore, the increase in pressure required to decrease the volume of the water sample by $0.01\% $ is $2.1 \times {10^5}{{N/}}{{{m}}^2}$.
Note: Bulk modulus should not be confused with young’s modulus or shear modulus. Young’s modulus is the ratio of tensile stress to tensile strain and shear modulus is the ratio of shear stress to shear strain, while bulk modulus is the ratio of tensile stress to tensile strain.
Formula used:
$\Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Complete step by step solution:
The bulk modulus of a material is a measure of how resistant the particular material is to compression. It can also be called the incompressibility of a material. Bulk modulus is defined as the proportion of volumetric stress of a material related to its volumetric strain when the deformation of the material is within its elastic limit. The symbol used for Bulk modulus is ${{K}}$ and the dimensions are of force per unit area and the S.I unit of Bulk modulus is ${{N/}}{{{m}}^{ - 2}}$.
Bulk modulus of a material is
${{K = - }}$$\Delta {{P}}\dfrac{{{V}}}{{\Delta {{V}}}}$,
where $\Delta {{P}}$is the change in pressure of force applied per unit area,
$\Delta {{V}}$ is the change in volume of the material due to compression and
$V$ is the initial volume of the material. Therefore,
$\Rightarrow \Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Since the decrease of the water sample is given as $0.01\% $
$\Rightarrow \Delta {{V = }} - \dfrac{{0.01}}{{100}} \times {{V}}$
$ \Rightarrow \dfrac{{\Delta {{V}}}}{{{V}}} = - 0.0001$
On putting the values in the equation, we get:
$\Rightarrow \Delta {{P = 0}}{{.0001}} \times {{2}}{{.1}} \times {{1}}{{{0}}^9}{{N/}}{{{m}}^2}$
$ \Rightarrow \Delta {{P = 2}}{{.1}} \times {{1}}{{{0}}^5}{{N/}}{{{m}}^2}$
Therefore, the increase in pressure required to decrease the volume of the water sample by $0.01\% $ is $2.1 \times {10^5}{{N/}}{{{m}}^2}$.
Note: Bulk modulus should not be confused with young’s modulus or shear modulus. Young’s modulus is the ratio of tensile stress to tensile strain and shear modulus is the ratio of shear stress to shear strain, while bulk modulus is the ratio of tensile stress to tensile strain.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

