Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.
Answer
Verified
116.4k+ views
Hint:According to the Bohr’s model of atomic structure, the angular momentum of the electron in an orbit is quantized. We need to use the classical definition of the angular momentum and compare it with the quantized angular momentum of the electron in the hydrogen atom.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[L = \dfrac{{nh}}{{2\pi }}\]
where the angular momentum L is the integral multiple of the minimum angular momentum of the electron in the hydrogen atom.
Complete step by step solution:
Let the mass of the electron is m and move with linear speed v in a circular orbit of nth energy level of radius r. Then the angular momentum of the electron will be,
\[L = mvr\]
On comparing with the angular momentum as per the Bohr’s model,
\[mvr = \dfrac{{nh}}{{2\pi }}\]
If the angular speed is \[\omega \] then the angular speed is related to the linear speed as \[\omega r = v\]
So, the expression becomes,
\[m\left( {\omega r} \right)r = \dfrac{{nh}}{{2\pi }} \\ \]
\[\Rightarrow \omega = \dfrac{{nh}}{{2m\pi {r^2}}}\]
For the maximum value of the angular speed the electron should be in ground state \[n = 1\] because the angular speed is inversely proportional to the principal quantum number. The radius of the ground state orbit is \[0.53 \times {10^{ - 10}}m\]
Putting the values, we get the minimum angular speed of the electron in hydrogen atom is,
\[{\omega _{\min }} = \dfrac{{1 \times 6.626 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 34}} \times 3.14 \times {{\left( {0.53 \times {{10}^{ - 10}}} \right)}^2}}}rad/s \\ \]
\[\therefore {\omega _{\min }} = 4.13 \times {10^{16}}\,rad/s\]
Hence, the minimum angular speed of the electron in a hydrogen atom is \[4.13 \times {10^{16}}\,rad/s\].
Therefore, the correct answer is \[4.13 \times {10^{17}}\,rad/s\].
Note: The angular momentum is proportional to the principal quantum number and the angular momentum of the particle is proportional to the angular speed. So for the minimum angular speed the angular momentum will also be minimum.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[L = \dfrac{{nh}}{{2\pi }}\]
where the angular momentum L is the integral multiple of the minimum angular momentum of the electron in the hydrogen atom.
Complete step by step solution:
Let the mass of the electron is m and move with linear speed v in a circular orbit of nth energy level of radius r. Then the angular momentum of the electron will be,
\[L = mvr\]
On comparing with the angular momentum as per the Bohr’s model,
\[mvr = \dfrac{{nh}}{{2\pi }}\]
If the angular speed is \[\omega \] then the angular speed is related to the linear speed as \[\omega r = v\]
So, the expression becomes,
\[m\left( {\omega r} \right)r = \dfrac{{nh}}{{2\pi }} \\ \]
\[\Rightarrow \omega = \dfrac{{nh}}{{2m\pi {r^2}}}\]
For the maximum value of the angular speed the electron should be in ground state \[n = 1\] because the angular speed is inversely proportional to the principal quantum number. The radius of the ground state orbit is \[0.53 \times {10^{ - 10}}m\]
Putting the values, we get the minimum angular speed of the electron in hydrogen atom is,
\[{\omega _{\min }} = \dfrac{{1 \times 6.626 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 34}} \times 3.14 \times {{\left( {0.53 \times {{10}^{ - 10}}} \right)}^2}}}rad/s \\ \]
\[\therefore {\omega _{\min }} = 4.13 \times {10^{16}}\,rad/s\]
Hence, the minimum angular speed of the electron in a hydrogen atom is \[4.13 \times {10^{16}}\,rad/s\].
Therefore, the correct answer is \[4.13 \times {10^{17}}\,rad/s\].
Note: The angular momentum is proportional to the principal quantum number and the angular momentum of the particle is proportional to the angular speed. So for the minimum angular speed the angular momentum will also be minimum.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics