Find the modulus of the mean velocity vector averaged over the first $t\,\sec $ of motion.
(A) $\sqrt {2{a^2} + {b^2}{t^2}} $
(B) $\sqrt {{a^2} + {b^2}{t^2}} $
(C) $\sqrt {{a^2} + b{t^2}} $
(D) $\sqrt {2{a^2} + {b^2}{t^2}} $
Answer
Verified
116.4k+ views
Hint The modulus of the mean velocity vector can be determined by using the formula of the mean velocity vector and the modulus of the final result is taken, then the modulus of the mean velocity vector can be determined. The formula of the mean velocity vector gives the relation between the velocity vector and the time.
Useful formula
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}$
Where, $\vec m$ is the mean velocity vector, $\vec V$ is the velocity vector and $t$ is the time taken.
Complete step by step solution
The unit vector of the $\vec r$ is given by,
$\vec r = at\hat i - b{t^2}\hat j$
The velocity vector is given by,
$\vec V = \dfrac{{d\vec r}}{{dt}}$
By differentiating the $\vec r$ with respect to the time, then the velocity vector is written as,
$\vec V = a\hat i - 2bt\hat j$
Now,
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}\,.................\left( 1 \right)$
By substituting the velocity vector in the above equation (1), then the above equation (1) is written as,
$\vec m = \dfrac{{\int {\left( {a\hat i - 2bt\hat j} \right)dt} }}{{\int {dt} }}$
By integrating the above equation, then the above equation is written as,
$\vec m = \dfrac{{at\hat i - b{t^2}\hat j}}{t}$
By cancelling the terms in the above equation, then the above equation is written as,
$\vec m = a\hat i - bt\hat j$
By taking modulus on the both sides, then the above equation is written as,
$\left| {\vec m} \right| = \left| {a\hat i - bt\hat j} \right|$
The modulus is the square root of the sum of the individual squares of the coefficient of the $\hat i$ and $\hat j$, then the above equation is written as,
$\left| {\vec m} \right| = \sqrt {{a^2} + {b^2}{t^2}} $
Thus, the above equation shows the modulus of the mean velocity vector.
Hence, the option (B) is the correct answer.
Note The mean velocity vector is directly proportional to the integration of the velocity vector and the mean velocity vector is inversely proportional to the time. As the velocity vector increases, then the mean velocity vector also increases.
Useful formula
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}$
Where, $\vec m$ is the mean velocity vector, $\vec V$ is the velocity vector and $t$ is the time taken.
Complete step by step solution
The unit vector of the $\vec r$ is given by,
$\vec r = at\hat i - b{t^2}\hat j$
The velocity vector is given by,
$\vec V = \dfrac{{d\vec r}}{{dt}}$
By differentiating the $\vec r$ with respect to the time, then the velocity vector is written as,
$\vec V = a\hat i - 2bt\hat j$
Now,
The mean velocity vector is given by,
$\vec m = \dfrac{{\int {\vec V.dt} }}{{\int {dt} }}\,.................\left( 1 \right)$
By substituting the velocity vector in the above equation (1), then the above equation (1) is written as,
$\vec m = \dfrac{{\int {\left( {a\hat i - 2bt\hat j} \right)dt} }}{{\int {dt} }}$
By integrating the above equation, then the above equation is written as,
$\vec m = \dfrac{{at\hat i - b{t^2}\hat j}}{t}$
By cancelling the terms in the above equation, then the above equation is written as,
$\vec m = a\hat i - bt\hat j$
By taking modulus on the both sides, then the above equation is written as,
$\left| {\vec m} \right| = \left| {a\hat i - bt\hat j} \right|$
The modulus is the square root of the sum of the individual squares of the coefficient of the $\hat i$ and $\hat j$, then the above equation is written as,
$\left| {\vec m} \right| = \sqrt {{a^2} + {b^2}{t^2}} $
Thus, the above equation shows the modulus of the mean velocity vector.
Hence, the option (B) is the correct answer.
Note The mean velocity vector is directly proportional to the integration of the velocity vector and the mean velocity vector is inversely proportional to the time. As the velocity vector increases, then the mean velocity vector also increases.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
Ideal and Non-Ideal Solutions Raoult's Law - JEE