
Find the shortest wavelength in Paschen series if, the longest wavelength in Balmer series is 6563 ${A^ \circ }$
Answer
232.8k+ views
Hint To answer this question we should know that the Paschen series are defined as the series of the lines in the spectrum of the hydrogen atom which corresponds to the transitions between the state along with the principal quantum number n = 3 and successive higher states. Based on this concept we have to answer this question.
Complete step-by-step answer:
It is given that, Longest wavelength of Balmer series = 6563 ${A^ \circ }$
To find the Shortest wavelength of the Paschen series we have to follow the steps.
We know that,
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{m^2}}}} \right)$
For Balmer series
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{{9 - 4}}{{36}}} \right)$
$\Rightarrow R{Z^2} = \left( {\dfrac{{36}}{{5 \times 6563}}} \right)\;\;\;...(i)$
For Paschen series
Shortest wavelength when $(m = \infty )$
$\dfrac{1}{{\lambda min}}$=$R{Z^2}\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{\infty }} \right)$
$\dfrac{1}{{\lambda min}} = \dfrac{{36}}{{5 \times 6563}} \times \dfrac{1}{9}$
$\lambda min = 8203.75{A^ \circ }$
Hence, the answer is $8203.75{A^ \circ }$.
Note We should know that the Blamer series is the name which is given to the series of the spectral emission lines of the hydrogen atom and comes as a result of the electron transitions from the higher level down to the energy level with the principal quantum number is 2.
The Balmer series is specifically used in astronomy because the Balmer lines appear in numerous stellar objects due to the abundance of hydrogen in the universe, and therefore they are commonly seen and relatively strong compared to the lines from other elements.
Complete step-by-step answer:
It is given that, Longest wavelength of Balmer series = 6563 ${A^ \circ }$
To find the Shortest wavelength of the Paschen series we have to follow the steps.
We know that,
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{m^2}}}} \right)$
For Balmer series
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{{9 - 4}}{{36}}} \right)$
$\Rightarrow R{Z^2} = \left( {\dfrac{{36}}{{5 \times 6563}}} \right)\;\;\;...(i)$
For Paschen series
Shortest wavelength when $(m = \infty )$
$\dfrac{1}{{\lambda min}}$=$R{Z^2}\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{\infty }} \right)$
$\dfrac{1}{{\lambda min}} = \dfrac{{36}}{{5 \times 6563}} \times \dfrac{1}{9}$
$\lambda min = 8203.75{A^ \circ }$
Hence, the answer is $8203.75{A^ \circ }$.
Note We should know that the Blamer series is the name which is given to the series of the spectral emission lines of the hydrogen atom and comes as a result of the electron transitions from the higher level down to the energy level with the principal quantum number is 2.
The Balmer series is specifically used in astronomy because the Balmer lines appear in numerous stellar objects due to the abundance of hydrogen in the universe, and therefore they are commonly seen and relatively strong compared to the lines from other elements.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

