
Find the shortest wavelength in Paschen series if, the longest wavelength in Balmer series is 6563 ${A^ \circ }$
Answer
142.2k+ views
Hint To answer this question we should know that the Paschen series are defined as the series of the lines in the spectrum of the hydrogen atom which corresponds to the transitions between the state along with the principal quantum number n = 3 and successive higher states. Based on this concept we have to answer this question.
Complete step-by-step answer:
It is given that, Longest wavelength of Balmer series = 6563 ${A^ \circ }$
To find the Shortest wavelength of the Paschen series we have to follow the steps.
We know that,
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{m^2}}}} \right)$
For Balmer series
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{{9 - 4}}{{36}}} \right)$
$\Rightarrow R{Z^2} = \left( {\dfrac{{36}}{{5 \times 6563}}} \right)\;\;\;...(i)$
For Paschen series
Shortest wavelength when $(m = \infty )$
$\dfrac{1}{{\lambda min}}$=$R{Z^2}\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{\infty }} \right)$
$\dfrac{1}{{\lambda min}} = \dfrac{{36}}{{5 \times 6563}} \times \dfrac{1}{9}$
$\lambda min = 8203.75{A^ \circ }$
Hence, the answer is $8203.75{A^ \circ }$.
Note We should know that the Blamer series is the name which is given to the series of the spectral emission lines of the hydrogen atom and comes as a result of the electron transitions from the higher level down to the energy level with the principal quantum number is 2.
The Balmer series is specifically used in astronomy because the Balmer lines appear in numerous stellar objects due to the abundance of hydrogen in the universe, and therefore they are commonly seen and relatively strong compared to the lines from other elements.
Complete step-by-step answer:
It is given that, Longest wavelength of Balmer series = 6563 ${A^ \circ }$
To find the Shortest wavelength of the Paschen series we have to follow the steps.
We know that,
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{m^2}}}} \right)$
For Balmer series
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right)$
$\Rightarrow \dfrac{1}{{6563}} = R{Z^2}\left( {\dfrac{{9 - 4}}{{36}}} \right)$
$\Rightarrow R{Z^2} = \left( {\dfrac{{36}}{{5 \times 6563}}} \right)\;\;\;...(i)$
For Paschen series
Shortest wavelength when $(m = \infty )$
$\dfrac{1}{{\lambda min}}$=$R{Z^2}\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{\infty }} \right)$
$\dfrac{1}{{\lambda min}} = \dfrac{{36}}{{5 \times 6563}} \times \dfrac{1}{9}$
$\lambda min = 8203.75{A^ \circ }$
Hence, the answer is $8203.75{A^ \circ }$.
Note We should know that the Blamer series is the name which is given to the series of the spectral emission lines of the hydrogen atom and comes as a result of the electron transitions from the higher level down to the energy level with the principal quantum number is 2.
The Balmer series is specifically used in astronomy because the Balmer lines appear in numerous stellar objects due to the abundance of hydrogen in the universe, and therefore they are commonly seen and relatively strong compared to the lines from other elements.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Electrical Field of Charged Spherical Shell - JEE

Physics Average Value and RMS Value JEE Main 2025

Charging and Discharging of Capacitor

Other Pages
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Collision - Important Concepts and Tips for JEE

Introduction to Dimensions With Different Units and Formula for JEE

The perfect formula used for calculating induced emf class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

A planoconvex lens f20cm is silvered at the plane surface class 12 physics JEE_Main
