Answer
Verified
108k+ views
Hint: In this question, we use the \[\sin \,A + \sin \,B\] formula. First, we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]then simplify it with the formula, and then re-insert it into the equation. To solve the remaining problems, we use trigonometry's cosine function.
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Recently Updated Pages
If x is real then the maximum and minimum values of class 10 maths JEE_Main
If one of the roots of equation x2+ax+30 is 3 and one class 10 maths JEE_Main
The HCF of two numbers is 96 and their LCM is 1296 class 10 maths JEE_Main
The height of a cone is 21 cm Find the area of the class 10 maths JEE_Main
In a family each daughter has the same number of brothers class 10 maths JEE_Main
If the vertices of a triangle are ab cc b0 and b0c class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Lattice energy of an ionic compound depends upon A class 11 chemistry JEE_Main
As a result of isobaric heating Delta T 72K one mole class 11 physics JEE_Main
The graph of current versus time in a wire is given class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A 5m long pole of 3kg mass is placed against a smooth class 11 physics JEE_Main