
Find the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\]
A. \[0\]
B. \[1\]
C. \[\dfrac{1}{2}\]
D. \[\dfrac{1}{{\sqrt 2 }}\]
Answer
133.2k+ views
Hint: In this question, we use the \[\sin \,A + \sin \,B\] formula. First, we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]then simplify it with the formula, and then re-insert it into the equation. To solve the remaining problems, we use trigonometry's cosine function.
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Formula used:
1. \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2. \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
3. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
4. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Complete step-by-step solution:
We are given that \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }...\left( 1 \right)\]
We are asked to find the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know the formula of \[\sin \,A + \sin \,B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Now we take \[\sin \,{50^ \circ } + \sin \,{10^ \circ }\]where \[A = {50^ \circ },B = {10^ \circ }\]
By the above formula, we have
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2\sin \left( {\dfrac{{{{50}^ \circ } + {{10}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{50}^ \circ } - {{10}^ \circ }}}{2}} \right) \\
= 2\sin \left( {\dfrac{{{{60}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{40}^ \circ }}}{2}} \right) \\
= 2\sin \left( {{{30}^ \circ }} \right)\cos \left( {{{20}^ \circ }} \right)
\]
Now we know that \[\sin \,{30^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } + \sin {10^ \circ } = 2 \times \dfrac{1}{2}\,\cos \left( {{{20}^ \circ }} \right) \\
= \cos \left( {{{20}^ \circ }} \right)...\left( 2 \right)
\]
Now re-insert this value in equation (1) and we get
\[\cos \,{20^ \circ } - \sin \,{70^ \circ }...\left( 3 \right)\]
Now we know that \[\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \]
\[
\cos \,{20^ \circ } = \cos \left( {{{90}^ \circ } - {{70}^ \circ }} \right) \\
= \sin \,{70^ \circ }
\]
When we substitute the above value in equation (4), we get
\[\sin \,{70^ \circ } - \sin \,{70^ \circ } = 0\]
Therefore, the value of \[\sin \,{50^ \circ } - \sin \,{70^ \circ } + \sin \,{10^ \circ }\] is \[0\].
Hence, option (A) is the correct answer.
Additional information: Trigonometric identities are used in mathematics when a trigonometric function is involved with an expression or an equation. When using trigonometry in geometry, the identities are involved with the function or the angles. Many trigonometric identities involve the angle of the triangle and the side length of the triangle. The trigonometric identities are only applicable to right-angled triangles. Trigonometric identity is represented with the help of an equation that has trigonometric ratios.
Note: We can also solve this question by an alternate method:
Given that \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]
Now we know that
\[
\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
\]
Now, \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\] can be written as
\[
\sin \left( {{{70}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } + \cos {60^ \circ }\sin {10^ \circ } \\
\sin \left( {{{50}^ \circ }} \right) = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ }
\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \left[ {\sin {{60}^ \circ }\cos {{10}^ \circ } + \cos {{60}^ \circ }\sin {{10}^ \circ }} \right] + \sin {10^ \circ } \\
= \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } - \sin {60^ \circ }\cos {10^ \circ } - \cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }
\]
Now, by canceling out the like terms, we get
\[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2\cos {60^ \circ }\sin {10^ \circ } + \sin {10^ \circ }\]
Now we know that \[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore,
\[
\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ } = - 2 \times \dfrac{1}{2}\,\sin {10^ \circ } + \sin {10^ \circ } \\
= - \sin {10^ \circ } + \sin {10^ \circ } \\
= 0
\]
Hence, the value of \[\sin {50^ \circ } - \sin {70^ \circ } + \sin {10^ \circ }\]is \[0\].
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

JEE Main 2025 City Intimation Slip (Out): Downloading Link and Exam Centres

JEE Main 2025 Session 2 Application Closed – Form Link, Last Date, Fee

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Syllabus 2025 (Updated)

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Raoult's Law with Examples

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

How Many Students Will Appear in JEE Main 2025?

Other Pages
Maths Question Paper for CBSE Class 10 - 2007

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

Surface Areas and Volumes Class 10 Notes CBSE Maths Chapter 12 (Free PDF Download)

Areas Related to Circles Class 10 Notes CBSE Maths Chapter 11 (Free PDF Download)
