
For an AM-system the total power of modulated signal is 600W and that of carrier is 400W, the modulation index is
(A) 0.25
(B) 0.36
(C) 0.54
(D) 1
Answer
127.8k+ views
Hint The modulation index for the total power of the modulated signal and carrier signal is related to total power and carrier power is given by ${P_T} = {P_C}\left( {1 + \dfrac{{{m_a}^2}}{2}} \right)$ . Substitute the power values and simplify to get the modulation index.
Complete step-by-step answer
The process of changing the amplitude of a carrier wave in accordance with the amplitude of the audio frequency signal is known as amplitude modulation (AM).

Power modulation index is given by,
${P_T} = {P_C}\left( {1 + \dfrac{{{m_a}^2}}{2}} \right)$
Where, ${P_T}$ is the total power modulated, ${P_C}$ is the carrier power, and ${m_a}$ is the modulation index.
It is given in the question that,
Total power of modulated signal$ = 600W$
Carrier power$ = 400W$
Substitute the given data in the above expression.
$600 = 400\left( {1 + \dfrac{{m_a^2}}{2}} \right)$
$\dfrac{3}{2} = 1 + \dfrac{{m_a^2}}{2}$
$\dfrac{{m_a^2}}{2} = \dfrac{1}{2}$
${m_a} = 1$
Hence, the modulation index is 1 and the correct option is D.
Note Maximum power in the AM without distortion will occur when ${m_a} = 1$
If ${I_C}$is unmodulated current and${I_T}$ is total modulated current then,
$\dfrac{{{P_T}}}{{{P_C}}} = {\left( {\dfrac{{{I_T}}}{{{I_C}}}} \right)^2}$
The ratio of change of amplitude of carrier wave to the amplitude of original carrier wave is called modulation factor or degree of modulation to modulation index. It is also called modulation depth.
Complete step-by-step answer
The process of changing the amplitude of a carrier wave in accordance with the amplitude of the audio frequency signal is known as amplitude modulation (AM).

Power modulation index is given by,
${P_T} = {P_C}\left( {1 + \dfrac{{{m_a}^2}}{2}} \right)$
Where, ${P_T}$ is the total power modulated, ${P_C}$ is the carrier power, and ${m_a}$ is the modulation index.
It is given in the question that,
Total power of modulated signal$ = 600W$
Carrier power$ = 400W$
Substitute the given data in the above expression.
$600 = 400\left( {1 + \dfrac{{m_a^2}}{2}} \right)$
$\dfrac{3}{2} = 1 + \dfrac{{m_a^2}}{2}$
$\dfrac{{m_a^2}}{2} = \dfrac{1}{2}$
${m_a} = 1$
Hence, the modulation index is 1 and the correct option is D.
Note Maximum power in the AM without distortion will occur when ${m_a} = 1$
If ${I_C}$is unmodulated current and${I_T}$ is total modulated current then,
$\dfrac{{{P_T}}}{{{P_C}}} = {\left( {\dfrac{{{I_T}}}{{{I_C}}}} \right)^2}$
The ratio of change of amplitude of carrier wave to the amplitude of original carrier wave is called modulation factor or degree of modulation to modulation index. It is also called modulation depth.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
