
For $N={{N}_{0}}{{e}^{-\lambda t}}$ and ${{t}_{2}}>{{t}_{1}}$, the number of nuclei disintegrating between ${{t}_{1}}$ and ${{t}_{2}}$ is:
(A) ${{N}_{0}}=[{{e}^{-\lambda /1}}-{{e}^{-\lambda /2}}]$
(B) ${{N}_{0}}=[{{e}^{-\lambda /2}}-{{e}^{-\lambda /1}}]$
(C) ${{N}_{0}}=[{{e}^{\lambda /2}}-{{e}^{\lambda /1}}]$
(D) None of the above
Answer
142.2k+ views
Hint: We know that radioactivity refers to the particles which are emitted from nuclei as a result of nuclear instability. Because the nucleus experiences the intense conflict between the two strongest forces in nature, it should not be surprising that there are many nuclear isotopes which are unstable and emit some kind of radiation. Instability of an atom's nucleus may result from an excess of either neutrons or protons. A radioactive atom will attempt to reach stability by ejecting nucleons (protons or neutrons), as well as other particles, or by releasing energy in other forms.
Complete step by step answer
Initial amount is $\mathrm{N}_{0}$ so amount after time $\mathrm{t}_{1}$ will be $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{1}}$
And that after time $\mathrm{t}_{2}$ is $\mathrm{N}_{2}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{2}}$
So decayed in period between $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$ is nothing but
$\mathrm{N}_{1}-\mathrm{N}_{2}=\mathrm{N}_{0}\left(\mathrm{e}^{-\lambda \mathrm{t}_{1}}-\mathrm{e}^{-\lambda \mathrm{t}_{2}}\right)$ as $\mathrm{N}_{1}>\mathrm{N}_{2}$ …... (1)
On solving this integral, we get
$\tau=1 / \lambda$Therefore, we can summarise the observation
as follows:
$\dfrac{{{t}_{1}}}{2}=\dfrac{(\ln 2)}{\lambda }=\tau \ln 2$
The number of nuclei which decay in
the time interval: t to $t+\Delta t$ is:
$\mathrm{R}(\mathrm{t}) \Delta \mathrm{t}=\left(\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}\right)$……. (2)
Each of them has lived for time $\mathfrak{t}$.
Hence, the total life of all these nuclei is $t \lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}$.
Therefore, from equation (1) and (2)
We, can determine that,
${{N}_{0}}=[{{e}^{-\lambda /2}}-{{e}^{-\lambda /1}}]$
Therefore, option B is the correct answer.
Note: We know that there are four major types of radiation: alpha, beta, neutrons, and electromagnetic waves such as gamma rays. They differ in mass, energy and how deeply they penetrate people and objects. Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. The most common type of radiation detector is a Geiger-Mueller (GM) tube, also called a Geiger counter. Utilizing radiation to combat cancer is an important career, earn your radiation therapy degree and help society. Killing Microbes: Gamma rays successfully kill microbes that cause food to decay. So food treated with this radiation has a longer shelf life.
Complete step by step answer
Initial amount is $\mathrm{N}_{0}$ so amount after time $\mathrm{t}_{1}$ will be $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{1}}$
And that after time $\mathrm{t}_{2}$ is $\mathrm{N}_{2}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{2}}$
So decayed in period between $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$ is nothing but
$\mathrm{N}_{1}-\mathrm{N}_{2}=\mathrm{N}_{0}\left(\mathrm{e}^{-\lambda \mathrm{t}_{1}}-\mathrm{e}^{-\lambda \mathrm{t}_{2}}\right)$ as $\mathrm{N}_{1}>\mathrm{N}_{2}$ …... (1)
On solving this integral, we get
$\tau=1 / \lambda$Therefore, we can summarise the observation
as follows:
$\dfrac{{{t}_{1}}}{2}=\dfrac{(\ln 2)}{\lambda }=\tau \ln 2$
The number of nuclei which decay in
the time interval: t to $t+\Delta t$ is:
$\mathrm{R}(\mathrm{t}) \Delta \mathrm{t}=\left(\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}\right)$……. (2)
Each of them has lived for time $\mathfrak{t}$.
Hence, the total life of all these nuclei is $t \lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}$.
Therefore, from equation (1) and (2)
We, can determine that,
${{N}_{0}}=[{{e}^{-\lambda /2}}-{{e}^{-\lambda /1}}]$
Therefore, option B is the correct answer.
Note: We know that there are four major types of radiation: alpha, beta, neutrons, and electromagnetic waves such as gamma rays. They differ in mass, energy and how deeply they penetrate people and objects. Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. The most common type of radiation detector is a Geiger-Mueller (GM) tube, also called a Geiger counter. Utilizing radiation to combat cancer is an important career, earn your radiation therapy degree and help society. Killing Microbes: Gamma rays successfully kill microbes that cause food to decay. So food treated with this radiation has a longer shelf life.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

A conducting loop carrying a current is placed in a class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Charging and Discharging of Capacitor

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
Collision - Important Concepts and Tips for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

A transformer is used to light a 100W and 110V lamp class 12 physics JEE_Main

Determine the time spent by a particle in a magnetic class 12 physics JEE_Main

A planoconvex lens f20cm is silvered at the plane surface class 12 physics JEE_Main

A light wave is incident normally on a glass slab of class 12 physics JEE_Main
