For $N={{N}_{0}}{{e}^{-\lambda t}}$ and ${{t}_{2}}>{{t}_{1}}$, the number of nuclei disintegrating between ${{t}_{1}}$ and ${{t}_{2}}$ is:
(A) ${{N}_{0}}=[{{e}^{-\lambda /1}}-{{e}^{-\lambda /2}}]$
(B) ${{N}_{0}}=[{{e}^{-\lambda /2}}-{{e}^{-\lambda /1}}]$
(C) ${{N}_{0}}=[{{e}^{\lambda /2}}-{{e}^{\lambda /1}}]$
(D) None of the above
Answer
Verified
116.4k+ views
Hint: We know that radioactivity refers to the particles which are emitted from nuclei as a result of nuclear instability. Because the nucleus experiences the intense conflict between the two strongest forces in nature, it should not be surprising that there are many nuclear isotopes which are unstable and emit some kind of radiation. Instability of an atom's nucleus may result from an excess of either neutrons or protons. A radioactive atom will attempt to reach stability by ejecting nucleons (protons or neutrons), as well as other particles, or by releasing energy in other forms.
Complete step by step answer
Initial amount is $\mathrm{N}_{0}$ so amount after time $\mathrm{t}_{1}$ will be $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{1}}$
And that after time $\mathrm{t}_{2}$ is $\mathrm{N}_{2}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{2}}$
So decayed in period between $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$ is nothing but
$\mathrm{N}_{1}-\mathrm{N}_{2}=\mathrm{N}_{0}\left(\mathrm{e}^{-\lambda \mathrm{t}_{1}}-\mathrm{e}^{-\lambda \mathrm{t}_{2}}\right)$ as $\mathrm{N}_{1}>\mathrm{N}_{2}$ …... (1)
On solving this integral, we get
$\tau=1 / \lambda$Therefore, we can summarise the observation
as follows:
$\dfrac{{{t}_{1}}}{2}=\dfrac{(\ln 2)}{\lambda }=\tau \ln 2$
The number of nuclei which decay in
the time interval: t to $t+\Delta t$ is:
$\mathrm{R}(\mathrm{t}) \Delta \mathrm{t}=\left(\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}\right)$……. (2)
Each of them has lived for time $\mathfrak{t}$.
Hence, the total life of all these nuclei is $t \lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}$.
Therefore, from equation (1) and (2)
We, can determine that,
${{N}_{0}}=[{{e}^{-\lambda /2}}-{{e}^{-\lambda /1}}]$
Therefore, option B is the correct answer.
Note: We know that there are four major types of radiation: alpha, beta, neutrons, and electromagnetic waves such as gamma rays. They differ in mass, energy and how deeply they penetrate people and objects. Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. The most common type of radiation detector is a Geiger-Mueller (GM) tube, also called a Geiger counter. Utilizing radiation to combat cancer is an important career, earn your radiation therapy degree and help society. Killing Microbes: Gamma rays successfully kill microbes that cause food to decay. So food treated with this radiation has a longer shelf life.
Complete step by step answer
Initial amount is $\mathrm{N}_{0}$ so amount after time $\mathrm{t}_{1}$ will be $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{1}}$
And that after time $\mathrm{t}_{2}$ is $\mathrm{N}_{2}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{2}}$
So decayed in period between $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$ is nothing but
$\mathrm{N}_{1}-\mathrm{N}_{2}=\mathrm{N}_{0}\left(\mathrm{e}^{-\lambda \mathrm{t}_{1}}-\mathrm{e}^{-\lambda \mathrm{t}_{2}}\right)$ as $\mathrm{N}_{1}>\mathrm{N}_{2}$ …... (1)
On solving this integral, we get
$\tau=1 / \lambda$Therefore, we can summarise the observation
as follows:
$\dfrac{{{t}_{1}}}{2}=\dfrac{(\ln 2)}{\lambda }=\tau \ln 2$
The number of nuclei which decay in
the time interval: t to $t+\Delta t$ is:
$\mathrm{R}(\mathrm{t}) \Delta \mathrm{t}=\left(\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}\right)$……. (2)
Each of them has lived for time $\mathfrak{t}$.
Hence, the total life of all these nuclei is $t \lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t} \Delta \mathrm{t}$.
Therefore, from equation (1) and (2)
We, can determine that,
${{N}_{0}}=[{{e}^{-\lambda /2}}-{{e}^{-\lambda /1}}]$
Therefore, option B is the correct answer.
Note: We know that there are four major types of radiation: alpha, beta, neutrons, and electromagnetic waves such as gamma rays. They differ in mass, energy and how deeply they penetrate people and objects. Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. The most common type of radiation detector is a Geiger-Mueller (GM) tube, also called a Geiger counter. Utilizing radiation to combat cancer is an important career, earn your radiation therapy degree and help society. Killing Microbes: Gamma rays successfully kill microbes that cause food to decay. So food treated with this radiation has a longer shelf life.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025