
For photoelectric emission, tungsten requires light of \[2300\mathop A\limits^ \circ \]. If light of \[1800\mathop A\limits^ \circ \] wavelength is incident, then emission:
A. Takes place
B. Doesn’t take place
C. May or may not take place
D. Depends on frequency
Answer
140.4k+ views
Hint: The threshold frequency of the metal is the frequency corresponding to the minimum energy that is required to eject the electron from the surface of metal.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
