Answer
Verified
99.9k+ views
Hint: The threshold frequency of the metal is the frequency corresponding to the minimum energy that is required to eject the electron from the surface of metal.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main