For photoelectric emission, tungsten requires light of \[2300\mathop A\limits^ \circ \]. If light of \[1800\mathop A\limits^ \circ \] wavelength is incident, then emission:
A. Takes place
B. Doesn’t take place
C. May or may not take place
D. Depends on frequency
Answer
Verified
115.8k+ views
Hint: The threshold frequency of the metal is the frequency corresponding to the minimum energy that is required to eject the electron from the surface of metal.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics