
For what value of $x$, function $f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + 40$ is monotonic decreasing?
A. $0 < x < 1$
B. $1 < x < 2$
C. $2 < x < 3$
D. $4 < x < 5$
Answer
232.8k+ views
Hint: In this question, we need to find the value of $x$for which the given function is monotonic decreasing. For this, we have to follow the condition such as $f'\left( x \right) < 0$. After further simplification, we will be able to find the value of $x$.
Complete step by step solution:
We know that $f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + 40$
First, we will find the derivative of the given function.
So, differentiate $f\left( x \right)$with respect to the variable$x$.
Thus, we get
$f'\left( x \right) = 4{x^3} - 12{x^2} + 8x$
Now, follow the condition $f'\left( x \right) < 0$.
$4{x^3} - 12{x^2} + 8x < 0$
Let us take the variable $4x$ common from the above expression.
$
4x\left( {{x^2} - 3x + 2} \right) < 0 \\
x\left( {{x^2} - 3x + 2} \right) < 0 \\
$
By factoring, we get
$x\left( {x - 1} \right)\left( {x - 2} \right) < 0$
$x = 0,2,1$
Thus, we can say that
$f'\left( x \right) > 0$ if $0 < x < 1$ and $x > 2$
$f'\left( x \right) < 0$ if $1 < x < 2$
Therefore, for $1 < x < 2$,the function $f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + 40$ is monotonic decreasing.
Option ‘B’ is correct
Additional Information: Monotonic functions are those functions that increase or decrease over their whole domain. A function is monotonic if the sign of its first derivative does not vary. Also, a decreasing function is defined as a function that reduces in value as the independent variable grows over a specified span. Thus, a monotonically declining function lowers as $x$ rises for all real $x$. These ideas are especially suitable for examining exponential and logarithmic functions.
Note: We need to follow the proper condition of derivative for monotonic decreasing function. If the derivative of a function is less than zero for all values of the specified variable in any region for a decreasing function, the function is defined as a monotonically falling or strictly decreasing function.
Complete step by step solution:
We know that $f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + 40$
First, we will find the derivative of the given function.
So, differentiate $f\left( x \right)$with respect to the variable$x$.
Thus, we get
$f'\left( x \right) = 4{x^3} - 12{x^2} + 8x$
Now, follow the condition $f'\left( x \right) < 0$.
$4{x^3} - 12{x^2} + 8x < 0$
Let us take the variable $4x$ common from the above expression.
$
4x\left( {{x^2} - 3x + 2} \right) < 0 \\
x\left( {{x^2} - 3x + 2} \right) < 0 \\
$
By factoring, we get
$x\left( {x - 1} \right)\left( {x - 2} \right) < 0$
$x = 0,2,1$
Thus, we can say that
$f'\left( x \right) > 0$ if $0 < x < 1$ and $x > 2$
$f'\left( x \right) < 0$ if $1 < x < 2$
Therefore, for $1 < x < 2$,the function $f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + 40$ is monotonic decreasing.
Option ‘B’ is correct
Additional Information: Monotonic functions are those functions that increase or decrease over their whole domain. A function is monotonic if the sign of its first derivative does not vary. Also, a decreasing function is defined as a function that reduces in value as the independent variable grows over a specified span. Thus, a monotonically declining function lowers as $x$ rises for all real $x$. These ideas are especially suitable for examining exponential and logarithmic functions.
Note: We need to follow the proper condition of derivative for monotonic decreasing function. If the derivative of a function is less than zero for all values of the specified variable in any region for a decreasing function, the function is defined as a monotonically falling or strictly decreasing function.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Square vs Rhombus: Key Differences Explained for Students

Power vs Exponent: Key Differences Explained for Students

Arithmetic Mean Formula Explained Simply

Algebraic Formula: Key Concepts & Easy Examples

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

