Forty-one forks are so arranged that each produced 5 beats per second when sounded with its near fork. If the frequency of last fork is double the frequency of first fork, then the frequencies of the first and last fork, respectively are:
A. \[200,400\]
B. $205,410$
C. $195,390$
D. $100,200$
Answer
Verified
122.7k+ views
Hint: When two sound waves of different frequency approach towards an observer, an alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9
JEE Main Course 2025: Get All the Relevant Details
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry