
Forty-one forks are so arranged that each produced 5 beats per second when sounded with its near fork. If the frequency of last fork is double the frequency of first fork, then the frequencies of the first and last fork, respectively are:
A. \[200,400\]
B. $205,410$
C. $195,390$
D. $100,200$
Answer
141k+ views
Hint: When two sound waves of different frequency approach towards an observer, an alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
