From a balloon rising vertically upward at $5\,m/s$ a stone is thrown up at $10\,m/s$ relative to the balloon. Its velocity with respect to the ground after $2s$ is. $(g = 10\,m/{s^2})$
(A) $0\,m/s$
(B) $20\,m/s$
(C) $10\,m/s$
(D) $5\,m/s$
Answer
Verified
118.2k+ views
Hint: We will find the initial velocity of the balloon which is the addition of the initial velocity of the stone and the balloon as given in the question. Next, we will use the displacement equation for time $t = 2s$ to get the displacement of the stone. We will calculate the velocity using the displacement in the equation ${v^2} = {u^2} + 2aS$.
Formula used: Laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$ and
${v^2} = {u^2} + 2aS$.
Complete step by step answer::
It is given that the balloon is rising vertically upwards with a velocity of $5\,m/s$. This is the initial velocity of the balloon and it does not change. From this balloon, we throw a stone at a speed of $10\,m/s$ upwards, in the same direction as that in which the balloon is travelling.
Thus the initial velocity of the stone is $15\,m/s$, since the speed of the balloon will get added to it. Now we have to find the velocity of the balloon at the time $t = 2s$. For this, we will use the laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$,
where $S$ is the required displacement.
Substituting the value of $t = 2s$ and the initial velocity of $u = 15\,m/s$ in the above equation, we get $S = (15\,m/s)(2s) + \dfrac{1}{2}( - 10\,m/{s^2}) \times {(2s)^2}$
$ \Rightarrow S = 20\,m$.
Next, we will use
${v^2} = {u^2} + 2aS$, where
$ \Rightarrow {v^2} = {(15\,m/s)^2} + 2( - 10\,m/{s^2})(20\,m) = {(5\,m/s)^2}$
Thus the magnitude of the velocity is
$v = 5\,m/s$
This is the velocity of the stone with respect to the ground after $2s$.
Therefore, the correct answer is option (D).
Note: The initial velocity of the stone needs to be found carefully since the reference frame should be with respect to the ground. Thus we add the velocity of the balloon with respect to the ground with the velocity of the stone with respect to the balloon. Here we will add the two velocities and not subtract, since both the velocities are directed towards the same direction and not opposite or at any other angle.
Formula used: Laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$ and
${v^2} = {u^2} + 2aS$.
Complete step by step answer::
It is given that the balloon is rising vertically upwards with a velocity of $5\,m/s$. This is the initial velocity of the balloon and it does not change. From this balloon, we throw a stone at a speed of $10\,m/s$ upwards, in the same direction as that in which the balloon is travelling.
Thus the initial velocity of the stone is $15\,m/s$, since the speed of the balloon will get added to it. Now we have to find the velocity of the balloon at the time $t = 2s$. For this, we will use the laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$,
where $S$ is the required displacement.
Substituting the value of $t = 2s$ and the initial velocity of $u = 15\,m/s$ in the above equation, we get $S = (15\,m/s)(2s) + \dfrac{1}{2}( - 10\,m/{s^2}) \times {(2s)^2}$
$ \Rightarrow S = 20\,m$.
Next, we will use
${v^2} = {u^2} + 2aS$, where
$ \Rightarrow {v^2} = {(15\,m/s)^2} + 2( - 10\,m/{s^2})(20\,m) = {(5\,m/s)^2}$
Thus the magnitude of the velocity is
$v = 5\,m/s$
This is the velocity of the stone with respect to the ground after $2s$.
Therefore, the correct answer is option (D).
Note: The initial velocity of the stone needs to be found carefully since the reference frame should be with respect to the ground. Thus we add the velocity of the balloon with respect to the ground with the velocity of the stone with respect to the balloon. Here we will add the two velocities and not subtract, since both the velocities are directed towards the same direction and not opposite or at any other angle.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)