
Given the Boltzmann’s constant, \[{k_B} = 1.38 \times {10^{ - 23}}{\text{ J/K}}\] , what will be the average translational kinetic energy of hydrogen gas molecules at NTP?
A. $0.186 \times {10^{ - 20}}{\text{ Joule}}$
B. $0.372 \times {10^{ - 20}}{\text{ Joule}}$
C. $0.56 \times {10^{ - 20}}{\text{ Joule}}$
D. $5.6 \times {10^{ - 20}}{\text{ Joule}}$
Answer
127.5k+ views
Hint: Average kinetic energy of gas molecules is given by $K.E. = \dfrac{3}{2}{k_B}T$ , where ${k_B}$ is Boltzmann’s constant having a value of $1.38 \times {10^{ - 23}}{\text{ J/K}}$ . This average kinetic energy is directly proportional to the absolute temperature of the gas molecules. .
Formula used:
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$
Complete answer:
In the above question, we have to calculate the average Kinetic Energy of the gas molecules at NTP, that is, Normal temperature and pressure.
Thus, $T = 273{\text{ K}}$ .
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$ … (1)
Here, $T$ is the absolute temperature and
${k_B}$ is Boltzmann’s constant having a value of $1.38 \times {10^{ - 23}}{\text{ J/K}}$ .
Substituting the value of temperature in equation (1) to calculate the value of the average translational kinetic energy,
$K.E. = \dfrac{3}{2}(1.38 \times {10^{ - 23}})(273) = 0.56 \times {10^{ - 20}}{\text{ J}}$
Hence, the average translational kinetic energy of hydrogen gas molecules at NYP is $0.56 \times {10^{ - 20}}{\text{ J}}$ .
Thus, the correct option is C.
Note: Average kinetic energy of gas molecules is given by $K.E. = \dfrac{3}{2}{k_B}T$ , where ${k_B}$ is Boltzmann’s constant. It is important to note that this average kinetic energy is dependent on temperature as it is directly proportional to it.
Formula used:
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$
Complete answer:
In the above question, we have to calculate the average Kinetic Energy of the gas molecules at NTP, that is, Normal temperature and pressure.
Thus, $T = 273{\text{ K}}$ .
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$ … (1)
Here, $T$ is the absolute temperature and
${k_B}$ is Boltzmann’s constant having a value of $1.38 \times {10^{ - 23}}{\text{ J/K}}$ .
Substituting the value of temperature in equation (1) to calculate the value of the average translational kinetic energy,
$K.E. = \dfrac{3}{2}(1.38 \times {10^{ - 23}})(273) = 0.56 \times {10^{ - 20}}{\text{ J}}$
Hence, the average translational kinetic energy of hydrogen gas molecules at NYP is $0.56 \times {10^{ - 20}}{\text{ J}}$ .
Thus, the correct option is C.
Note: Average kinetic energy of gas molecules is given by $K.E. = \dfrac{3}{2}{k_B}T$ , where ${k_B}$ is Boltzmann’s constant. It is important to note that this average kinetic energy is dependent on temperature as it is directly proportional to it.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic
