Answer
Verified
109.8k+ views
Hints First we will apply the Pythagorean theorem to check whether the given triangle is a right-angle triangle or not. Then decide which are the legs and hypotenuse of the triangle. Then find the angle between B and C using the trigonometry ratios.
Formula used
The Pythagoras theorem for right angle is,
\[{a^2} + {b^2} = {c^2}\], where a is the base, b is the height, and c is the hypotenuse.
Also,
\[\cos \theta = \dfrac{p}{q}\], where p is the base and q is the hypotenuse.
Complete step by step solution
The given lengths of the sides are 13, 12, and 5.
Now,
\[{12^2} + {5^2}\]
\[ = 144 + 25\]
\[ = 169\]
\[ = {13^2}\]
Therefore, according to Pythagoras' theorem, the given triangle is right-angled.
The diagram of the given triangle is,
Use the formula \[\cos \theta = \dfrac{p}{q}\] , where p is the base and q is the hypotenuse to obtain the required result.
Therefore,
\[\cos \theta = \dfrac{5}{{13}}\]
\[\theta = {\cos ^{ - 1}}\left( {\dfrac{5}{{13}}} \right)\] .
The correct option is A.
Note Students often used cosine formula \[{A^2} = {B^2} + {C^2} + 2BC\cos \phi \] to obtain the angle between B and C and \[\theta\]. By using the cosine formula we cannot able find the angle between B and C. Because the cosine formula is applicable to an oblique triangle. Thus we will use trigonometry ratios to find the angle between them.
Formula used
The Pythagoras theorem for right angle is,
\[{a^2} + {b^2} = {c^2}\], where a is the base, b is the height, and c is the hypotenuse.
Also,
\[\cos \theta = \dfrac{p}{q}\], where p is the base and q is the hypotenuse.
Complete step by step solution
The given lengths of the sides are 13, 12, and 5.
Now,
\[{12^2} + {5^2}\]
\[ = 144 + 25\]
\[ = 169\]
\[ = {13^2}\]
Therefore, according to Pythagoras' theorem, the given triangle is right-angled.
The diagram of the given triangle is,
Use the formula \[\cos \theta = \dfrac{p}{q}\] , where p is the base and q is the hypotenuse to obtain the required result.
Therefore,
\[\cos \theta = \dfrac{5}{{13}}\]
\[\theta = {\cos ^{ - 1}}\left( {\dfrac{5}{{13}}} \right)\] .
The correct option is A.
Note Students often used cosine formula \[{A^2} = {B^2} + {C^2} + 2BC\cos \phi \] to obtain the angle between B and C and \[\theta\]. By using the cosine formula we cannot able find the angle between B and C. Because the cosine formula is applicable to an oblique triangle. Thus we will use trigonometry ratios to find the angle between them.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main