Answer
Verified
99.9k+ views
Hints First we will apply the Pythagorean theorem to check whether the given triangle is a right-angle triangle or not. Then decide which are the legs and hypotenuse of the triangle. Then find the angle between B and C using the trigonometry ratios.
Formula used
The Pythagoras theorem for right angle is,
\[{a^2} + {b^2} = {c^2}\], where a is the base, b is the height, and c is the hypotenuse.
Also,
\[\cos \theta = \dfrac{p}{q}\], where p is the base and q is the hypotenuse.
Complete step by step solution
The given lengths of the sides are 13, 12, and 5.
Now,
\[{12^2} + {5^2}\]
\[ = 144 + 25\]
\[ = 169\]
\[ = {13^2}\]
Therefore, according to Pythagoras' theorem, the given triangle is right-angled.
The diagram of the given triangle is,
Use the formula \[\cos \theta = \dfrac{p}{q}\] , where p is the base and q is the hypotenuse to obtain the required result.
Therefore,
\[\cos \theta = \dfrac{5}{{13}}\]
\[\theta = {\cos ^{ - 1}}\left( {\dfrac{5}{{13}}} \right)\] .
The correct option is A.
Note Students often used cosine formula \[{A^2} = {B^2} + {C^2} + 2BC\cos \phi \] to obtain the angle between B and C and \[\theta\]. By using the cosine formula we cannot able find the angle between B and C. Because the cosine formula is applicable to an oblique triangle. Thus we will use trigonometry ratios to find the angle between them.
Formula used
The Pythagoras theorem for right angle is,
\[{a^2} + {b^2} = {c^2}\], where a is the base, b is the height, and c is the hypotenuse.
Also,
\[\cos \theta = \dfrac{p}{q}\], where p is the base and q is the hypotenuse.
Complete step by step solution
The given lengths of the sides are 13, 12, and 5.
Now,
\[{12^2} + {5^2}\]
\[ = 144 + 25\]
\[ = 169\]
\[ = {13^2}\]
Therefore, according to Pythagoras' theorem, the given triangle is right-angled.
The diagram of the given triangle is,
Use the formula \[\cos \theta = \dfrac{p}{q}\] , where p is the base and q is the hypotenuse to obtain the required result.
Therefore,
\[\cos \theta = \dfrac{5}{{13}}\]
\[\theta = {\cos ^{ - 1}}\left( {\dfrac{5}{{13}}} \right)\] .
The correct option is A.
Note Students often used cosine formula \[{A^2} = {B^2} + {C^2} + 2BC\cos \phi \] to obtain the angle between B and C and \[\theta\]. By using the cosine formula we cannot able find the angle between B and C. Because the cosine formula is applicable to an oblique triangle. Thus we will use trigonometry ratios to find the angle between them.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main