
If a function is given by \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\text{ then }{{f}^{'}}\left( -\dfrac{1}{2} \right)\]
(a) \[\dfrac{-\sqrt{3}}{2}{{\log }_{e}}\sqrt{3}\]
(b) \[\dfrac{\sqrt{3}}{2}{{\log }_{e}}\sqrt{3}\]
(c) \[-\sqrt{3}{{\log }_{e}}3\]
(d) \[\sqrt{3}{{\log }_{e}}3\]
Answer
133.8k+ views
Hint: In order to solve this question, we will first find the derivative of f(x) and then we will put the value of x as \[\dfrac{-1}{2}\]. To find the derivative of f(x), we should know about a few derivative formulas like chain rule, quotient rule given by - \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]By using these formulas we can solve this question.
Complete step-by-step answer:
In this question, we have been asked to find the value of \[{{f}^{'}}\left( -\dfrac{1}{2} \right)\] where \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]. To solve this question, we should know that the derivatives of \[f\left( g\left( x \right) \right),{{\sin }^{-1}}x,{{a}^{x}},\dfrac{u}{v}\] type function is given by \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, to solve this question, we will first find the derivative of \[{{\sin }^{-1}}\] then \[\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\] and then that of \[{{3}^{x}}\text{ and }{{9}^{x}}\]. So, we can write
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right) \right)\]
Here, we can see that the function is of the form f (g (x)) where \[g\left( x \right)=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\]. So, we can apply the chain rule. Now, we know that \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. So, for \[x=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{1-{{\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we will simplify it. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{\dfrac{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}{{{\left( 1+{{9}^{x}} \right)}^{2}}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1+{{9}^{x}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we know using quotient rule that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, we can write \[\dfrac{d}{dx}\left( f\left( x \right) \right)\] for \[u=2\times {{3}^{x}}\text{ and }v=1+{{9}^{x}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)-\left( 2\times {{3}^{x}} \right)\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we know that \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}\log a\]. So, we can write \[\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)=2\times {{3}^{x}}\log 3\] and \[\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)={{9}^{x}}\log 9\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\left( 2\times {{3}^{x}}\times \log 3 \right)-\left( 2\times {{3}^{x}} \right)\left( {{9}^{x}}\log 9 \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we will simplify it further, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 9}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log {{3}^{2}}}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we know that \[\log {{a}^{n}}=n\log a\]. So, we can write \[\log {{3}^{2}}=2\log 3\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-4\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+\left( {{3}^{x}}\times {{9}^{x}}\log 3 \right)\times \left( 2-4 \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3\left( 1-{{9}^{x}} \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
We know that \[\dfrac{d}{dx}\left( f\left( x \right) \right)={{f}^{'}}\left( x \right)\]. So, we can write,
\[{{f}^{'}}\left( x \right)=\dfrac{2\times {{3}^{x}}\times \left( 1-{{9}^{x}} \right)\times \log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we will put \[x=\dfrac{-1}{2}\] to get the value of \[{{f}^{'}}\left( \dfrac{-1}{2} \right)\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{2\times {{3}^{\dfrac{-1}{2}}}\times \left( 1-{{9}^{\dfrac{-1}{2}}} \right)\times \log 3}{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)\sqrt{{{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)}^{2}}-{{\left( 2\times {{3}^{\dfrac{-1}{2}}} \right)}^{2}}}}\]
Now, we know that \[\sqrt{9}=3\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\left( 1-\dfrac{1}{3} \right)\log 3}{\left( 1+\dfrac{1}{3} \right)\sqrt{{{\left( 1+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{3}}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16}{9}-\dfrac{4}{3}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16-12}{9}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\times \dfrac{4}{3}\times \dfrac{2}{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\times 3\times 3\times \log 3}{4\times 2\times 3\sqrt{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log 3\]
Now, we know that \[3={{\left( \sqrt{3} \right)}^{2}}\]. So, we can write
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log {{\left( \sqrt{3} \right)}^{2}}\]
And we know that \[\log {{m}^{n}}=n\log m\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\left( 2\log \sqrt{3} \right)\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}\log \sqrt{3}\]
Hence, we can say that, for \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\], we get \[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}{{\log }_{e}}\sqrt{3}\]
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of \[{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. Sometimes in a hurry, we end up writing it as \[\dfrac{1}{\sqrt{{{x}^{2}}-1}}\text{ or }\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\] which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.
Complete step-by-step answer:
In this question, we have been asked to find the value of \[{{f}^{'}}\left( -\dfrac{1}{2} \right)\] where \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]. To solve this question, we should know that the derivatives of \[f\left( g\left( x \right) \right),{{\sin }^{-1}}x,{{a}^{x}},\dfrac{u}{v}\] type function is given by \[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right),\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{,}\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, to solve this question, we will first find the derivative of \[{{\sin }^{-1}}\] then \[\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\] and then that of \[{{3}^{x}}\text{ and }{{9}^{x}}\]. So, we can write
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right) \right)\]
Here, we can see that the function is of the form f (g (x)) where \[g\left( x \right)=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\]. So, we can apply the chain rule. Now, we know that \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. So, for \[x=\dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{1-{{\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we will simplify it. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1}{\sqrt{\dfrac{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}{{{\left( 1+{{9}^{x}} \right)}^{2}}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{1+{{9}^{x}}}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{d}{dx}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\]
Now, we know using quotient rule that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, we can write \[\dfrac{d}{dx}\left( f\left( x \right) \right)\] for \[u=2\times {{3}^{x}}\text{ and }v=1+{{9}^{x}}\], we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)-\left( 2\times {{3}^{x}} \right)\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we know that \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}\log a\]. So, we can write \[\dfrac{d}{dx}\left( 2\times {{3}^{x}} \right)=2\times {{3}^{x}}\log 3\] and \[\dfrac{d}{dx}\left( 1+{{9}^{x}} \right)={{9}^{x}}\log 9\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{\left( 1+{{9}^{x}} \right)}{\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}.\dfrac{\left( 1+{{9}^{x}} \right)\left( 2\times {{3}^{x}}\times \log 3 \right)-\left( 2\times {{3}^{x}} \right)\left( {{9}^{x}}\log 9 \right)}{{{\left( 1+{{9}^{x}} \right)}^{2}}}\]
Now, we will simplify it further, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 9}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-2\times {{3}^{x}}\times {{9}^{x}}\log {{3}^{2}}}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we know that \[\log {{a}^{n}}=n\log a\]. So, we can write \[\log {{3}^{2}}=2\log 3\]. So, we get,
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+{{9}^{x}}\times 2\times {{3}^{x}}\log 3-4\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3+\left( {{3}^{x}}\times {{9}^{x}}\log 3 \right)\times \left( 2-4 \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3-2\times {{3}^{x}}\times {{9}^{x}}\log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
\[\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{2\times {{3}^{x}}\times \log 3\left( 1-{{9}^{x}} \right)}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
We know that \[\dfrac{d}{dx}\left( f\left( x \right) \right)={{f}^{'}}\left( x \right)\]. So, we can write,
\[{{f}^{'}}\left( x \right)=\dfrac{2\times {{3}^{x}}\times \left( 1-{{9}^{x}} \right)\times \log 3}{\left( 1+{{9}^{x}} \right)\sqrt{{{\left( 1+{{9}^{x}} \right)}^{2}}-{{\left( 2\times {{3}^{x}} \right)}^{2}}}}\]
Now, we will put \[x=\dfrac{-1}{2}\] to get the value of \[{{f}^{'}}\left( \dfrac{-1}{2} \right)\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{2\times {{3}^{\dfrac{-1}{2}}}\times \left( 1-{{9}^{\dfrac{-1}{2}}} \right)\times \log 3}{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)\sqrt{{{\left( 1+{{9}^{\dfrac{-1}{2}}} \right)}^{2}}-{{\left( 2\times {{3}^{\dfrac{-1}{2}}} \right)}^{2}}}}\]
Now, we know that \[\sqrt{9}=3\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\left( 1-\dfrac{1}{3} \right)\log 3}{\left( 1+\dfrac{1}{3} \right)\sqrt{{{\left( 1+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{3}}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16}{9}-\dfrac{4}{3}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\left[ \dfrac{4}{3}\sqrt{\dfrac{16-12}{9}} \right]}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\log 3}{3\sqrt{3}\times \dfrac{4}{3}\times \dfrac{2}{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{4\times 3\times 3\times \log 3}{4\times 2\times 3\sqrt{3}}\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log 3\]
Now, we know that \[3={{\left( \sqrt{3} \right)}^{2}}\]. So, we can write
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\log {{\left( \sqrt{3} \right)}^{2}}\]
And we know that \[\log {{m}^{n}}=n\log m\]. So, we get,
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\dfrac{\sqrt{3}}{2}\left( 2\log \sqrt{3} \right)\]
\[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}\log \sqrt{3}\]
Hence, we can say that, for \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^{x}}} \right)\], we get \[{{f}^{'}}\left( \dfrac{-1}{2} \right)=\sqrt{3}{{\log }_{e}}\sqrt{3}\]
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of \[{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. Sometimes in a hurry, we end up writing it as \[\dfrac{1}{\sqrt{{{x}^{2}}-1}}\text{ or }\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\] which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Class 10 Hindi Sample Papers 2024-25
