
If a wire is stretched to n times of its original length, its new resistance will be
(A) \[\dfrac{1}{n}\] times
(B) ${n^2}$ times
(C) n times
(D) None
Answer
131.7k+ views
Hint The resistance of the conductor is given by $R = \rho \dfrac{l}{A}$ ; it is directly proportional to length and inversely proportional to area. When length is extended by some measure the area gets reduced by the same measure. Substitute length and area after extension again to get the new resistance.
Complete step-by-step solution
Resistance of a substance is a property by virtue of which it opposes the flow of current through it. This resistance of the conductor is given by
$R = \rho \dfrac{l}{A}$
Where, l is the length of the conductor, A is the area of cross section and ρ is the resistivity of the material.

From the above expression we know that
$
R \propto l \\
R \propto \dfrac{1}{A} \\
$
When the conductor’s length is increased by n times by stretching the area becomes n times less, so
Let l’ and A’ be the length and area after stretching
l’=nl
$A' = \dfrac{A}{n}$
Substitute the new length and area,
$
R' = \rho \dfrac{{nl}}{{\left( {\dfrac{A}{n}} \right)}} \\
R' = {n^2}\rho \dfrac{l}{A} \\
R' = {n^2}R \\
$
Hence, the new resistance is \[{n^2}\] the resistance before and the correct option is B.
Note The resistance is directly proportional to temperature so, resistance increases when temperature is more and vice versa. If \[{R_1}\] and \[{R_2}\] are resistance at temperature \[{T_1}\] and \[{T_2}\]
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{1 + \alpha {T_1}}}{{1 + \alpha {T_2}}}$
\[ \propto \] are the temperature coefficients.
Complete step-by-step solution
Resistance of a substance is a property by virtue of which it opposes the flow of current through it. This resistance of the conductor is given by
$R = \rho \dfrac{l}{A}$
Where, l is the length of the conductor, A is the area of cross section and ρ is the resistivity of the material.

From the above expression we know that
$
R \propto l \\
R \propto \dfrac{1}{A} \\
$
When the conductor’s length is increased by n times by stretching the area becomes n times less, so
Let l’ and A’ be the length and area after stretching
l’=nl
$A' = \dfrac{A}{n}$
Substitute the new length and area,
$
R' = \rho \dfrac{{nl}}{{\left( {\dfrac{A}{n}} \right)}} \\
R' = {n^2}\rho \dfrac{l}{A} \\
R' = {n^2}R \\
$
Hence, the new resistance is \[{n^2}\] the resistance before and the correct option is B.
Note The resistance is directly proportional to temperature so, resistance increases when temperature is more and vice versa. If \[{R_1}\] and \[{R_2}\] are resistance at temperature \[{T_1}\] and \[{T_2}\]
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{1 + \alpha {T_1}}}{{1 + \alpha {T_2}}}$
\[ \propto \] are the temperature coefficients.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
