If a wire is stretched to n times of its original length, its new resistance will be
(A) \[\dfrac{1}{n}\] times
(B) ${n^2}$ times
(C) n times
(D) None
Answer
Verified
118.5k+ views
Hint The resistance of the conductor is given by $R = \rho \dfrac{l}{A}$ ; it is directly proportional to length and inversely proportional to area. When length is extended by some measure the area gets reduced by the same measure. Substitute length and area after extension again to get the new resistance.
Complete step-by-step solution
Resistance of a substance is a property by virtue of which it opposes the flow of current through it. This resistance of the conductor is given by
$R = \rho \dfrac{l}{A}$
Where, l is the length of the conductor, A is the area of cross section and ρ is the resistivity of the material.
From the above expression we know that
$
R \propto l \\
R \propto \dfrac{1}{A} \\
$
When the conductor’s length is increased by n times by stretching the area becomes n times less, so
Let l’ and A’ be the length and area after stretching
l’=nl
$A' = \dfrac{A}{n}$
Substitute the new length and area,
$
R' = \rho \dfrac{{nl}}{{\left( {\dfrac{A}{n}} \right)}} \\
R' = {n^2}\rho \dfrac{l}{A} \\
R' = {n^2}R \\
$
Hence, the new resistance is \[{n^2}\] the resistance before and the correct option is B.
Note The resistance is directly proportional to temperature so, resistance increases when temperature is more and vice versa. If \[{R_1}\] and \[{R_2}\] are resistance at temperature \[{T_1}\] and \[{T_2}\]
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{1 + \alpha {T_1}}}{{1 + \alpha {T_2}}}$
\[ \propto \] are the temperature coefficients.
Complete step-by-step solution
Resistance of a substance is a property by virtue of which it opposes the flow of current through it. This resistance of the conductor is given by
$R = \rho \dfrac{l}{A}$
Where, l is the length of the conductor, A is the area of cross section and ρ is the resistivity of the material.
From the above expression we know that
$
R \propto l \\
R \propto \dfrac{1}{A} \\
$
When the conductor’s length is increased by n times by stretching the area becomes n times less, so
Let l’ and A’ be the length and area after stretching
l’=nl
$A' = \dfrac{A}{n}$
Substitute the new length and area,
$
R' = \rho \dfrac{{nl}}{{\left( {\dfrac{A}{n}} \right)}} \\
R' = {n^2}\rho \dfrac{l}{A} \\
R' = {n^2}R \\
$
Hence, the new resistance is \[{n^2}\] the resistance before and the correct option is B.
Note The resistance is directly proportional to temperature so, resistance increases when temperature is more and vice versa. If \[{R_1}\] and \[{R_2}\] are resistance at temperature \[{T_1}\] and \[{T_2}\]
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{1 + \alpha {T_1}}}{{1 + \alpha {T_2}}}$
\[ \propto \] are the temperature coefficients.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs