
If a wire is stretched to n times of its original length, its new resistance will be
(A) \[\dfrac{1}{n}\] times
(B) ${n^2}$ times
(C) n times
(D) None
Answer
232.8k+ views
Hint The resistance of the conductor is given by $R = \rho \dfrac{l}{A}$ ; it is directly proportional to length and inversely proportional to area. When length is extended by some measure the area gets reduced by the same measure. Substitute length and area after extension again to get the new resistance.
Complete step-by-step solution
Resistance of a substance is a property by virtue of which it opposes the flow of current through it. This resistance of the conductor is given by
$R = \rho \dfrac{l}{A}$
Where, l is the length of the conductor, A is the area of cross section and ρ is the resistivity of the material.

From the above expression we know that
$
R \propto l \\
R \propto \dfrac{1}{A} \\
$
When the conductor’s length is increased by n times by stretching the area becomes n times less, so
Let l’ and A’ be the length and area after stretching
l’=nl
$A' = \dfrac{A}{n}$
Substitute the new length and area,
$
R' = \rho \dfrac{{nl}}{{\left( {\dfrac{A}{n}} \right)}} \\
R' = {n^2}\rho \dfrac{l}{A} \\
R' = {n^2}R \\
$
Hence, the new resistance is \[{n^2}\] the resistance before and the correct option is B.
Note The resistance is directly proportional to temperature so, resistance increases when temperature is more and vice versa. If \[{R_1}\] and \[{R_2}\] are resistance at temperature \[{T_1}\] and \[{T_2}\]
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{1 + \alpha {T_1}}}{{1 + \alpha {T_2}}}$
\[ \propto \] are the temperature coefficients.
Complete step-by-step solution
Resistance of a substance is a property by virtue of which it opposes the flow of current through it. This resistance of the conductor is given by
$R = \rho \dfrac{l}{A}$
Where, l is the length of the conductor, A is the area of cross section and ρ is the resistivity of the material.

From the above expression we know that
$
R \propto l \\
R \propto \dfrac{1}{A} \\
$
When the conductor’s length is increased by n times by stretching the area becomes n times less, so
Let l’ and A’ be the length and area after stretching
l’=nl
$A' = \dfrac{A}{n}$
Substitute the new length and area,
$
R' = \rho \dfrac{{nl}}{{\left( {\dfrac{A}{n}} \right)}} \\
R' = {n^2}\rho \dfrac{l}{A} \\
R' = {n^2}R \\
$
Hence, the new resistance is \[{n^2}\] the resistance before and the correct option is B.
Note The resistance is directly proportional to temperature so, resistance increases when temperature is more and vice versa. If \[{R_1}\] and \[{R_2}\] are resistance at temperature \[{T_1}\] and \[{T_2}\]
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{1 + \alpha {T_1}}}{{1 + \alpha {T_2}}}$
\[ \propto \] are the temperature coefficients.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

