Answer
Verified
112.8k+ views
Hint-Try and form all lexicographically smaller alphabets than word SMALL in the dictionary.
Here we have to tell the position of the word SMALL in the dictionary.
Now let’s fix A in the first position, then we get
A_ _ _ _,
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix L in the first position, then we get
L_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, S. As no letter is repeated twice so the total ways of arranging 4 letters in 4 places is\[4! = 4 \times 3 \times 2 \times 1 = 24\]
Now let’s fix M in the first position, then we get
M_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is S, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix S in the first position and A in second position, then we get
S A _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is L, L, and M. As L is repeating twice so the total ways of arranging 3 letters in 3 places in which two letters are repeating is \[\frac{{3!}}{{2!}} = \frac{{3 \times 2}}{{2 \times 1}} = 3\]
Now let’s fix S in the first position and L in second position, then we get
S L _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is M, A, L. As no letter is repeated twice so the total ways of arranging 3 letters in 3 places is\[3! = 3 \times 2 \times 1 = 6\]
Now let’s fix S in the first position and M in second position, then if we arrange in alphabetical order the next word we get is SMALL only.
Hence the position of SMALL in dictionary is
Position $ = 12 + 24 + 12 + 3 + 6 + 1 = {58^{th}}$
Thus (d) is the right option
Note- The key concept while solving such problems is to make all the possible cases of words that are lexicographically smaller than the given word in the dictionary, this eventually gives us the position of the word in the dictionary.
Here we have to tell the position of the word SMALL in the dictionary.
Now let’s fix A in the first position, then we get
A_ _ _ _,
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix L in the first position, then we get
L_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, S. As no letter is repeated twice so the total ways of arranging 4 letters in 4 places is\[4! = 4 \times 3 \times 2 \times 1 = 24\]
Now let’s fix M in the first position, then we get
M_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is S, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix S in the first position and A in second position, then we get
S A _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is L, L, and M. As L is repeating twice so the total ways of arranging 3 letters in 3 places in which two letters are repeating is \[\frac{{3!}}{{2!}} = \frac{{3 \times 2}}{{2 \times 1}} = 3\]
Now let’s fix S in the first position and L in second position, then we get
S L _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is M, A, L. As no letter is repeated twice so the total ways of arranging 3 letters in 3 places is\[3! = 3 \times 2 \times 1 = 6\]
Now let’s fix S in the first position and M in second position, then if we arrange in alphabetical order the next word we get is SMALL only.
Hence the position of SMALL in dictionary is
Position $ = 12 + 24 + 12 + 3 + 6 + 1 = {58^{th}}$
Thus (d) is the right option
Note- The key concept while solving such problems is to make all the possible cases of words that are lexicographically smaller than the given word in the dictionary, this eventually gives us the position of the word in the dictionary.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Radius of the largest circle which passes through -class-11-maths-JEE_Main
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs