If force \[F\] , acceleration \[a\] , and time \[T\] are taken as the fundamental physical quantities, the dimension of length on this system of units:
$\left( A \right)FA{T^2}$
$\left( B \right)FAT$
$\left( C \right)FT$
$\left( D \right)A{T^2}$
Answer
Verified
120.9k+ views
Hint: In the CGS system we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time. First equate the energy dimension with the dimension of force, acceleration, and time. Then, write the dimension of energy in terms of force, acceleration, and time.
Complete step by step solution:
The physical quantities are measured by these 3 systems that are the F.P.S system (foot, pound, second) C.G.S (centimeter, gram, second), and M.K.S(meter, kilogram, second).
In the CGS system, we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time.
The powers to which a physical quantity is raised is called the dimension of a physical quantity. They represent a physical quantity.
Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation. It determines relationships between different physical quantities. It can also find the unit of a given physical quantity.
The energy dimension,
$\Rightarrow E = K{F^a}{A^b}{T^c}$
Equating energy dimension with force, acceleration, and time.
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = {\left[ {ML{T^{ - 2}}} \right]^a}{\left[ {L{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = \left[ {{M^a}{L^{a + b}}{T^{ - 2a - 2b + c}}} \right]$
Now we get,
$\Rightarrow a = 1,a + b = 2 \Rightarrow b = 1$
$ \Rightarrow - 2a - 2b + c = - 2 \Rightarrow b = 1$
Hence,
$\Rightarrow E = KFA{T^2}$, K is a constant.
Hence option A is the correct option.
Note: The force which produces an acceleration $1c{m^2}$ in a body of mass of one gram, in its direction is called dyne. IN the CGS system we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time. Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation.
Complete step by step solution:
The physical quantities are measured by these 3 systems that are the F.P.S system (foot, pound, second) C.G.S (centimeter, gram, second), and M.K.S(meter, kilogram, second).
In the CGS system, we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time.
The powers to which a physical quantity is raised is called the dimension of a physical quantity. They represent a physical quantity.
Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation. It determines relationships between different physical quantities. It can also find the unit of a given physical quantity.
The energy dimension,
$\Rightarrow E = K{F^a}{A^b}{T^c}$
Equating energy dimension with force, acceleration, and time.
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = {\left[ {ML{T^{ - 2}}} \right]^a}{\left[ {L{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = \left[ {{M^a}{L^{a + b}}{T^{ - 2a - 2b + c}}} \right]$
Now we get,
$\Rightarrow a = 1,a + b = 2 \Rightarrow b = 1$
$ \Rightarrow - 2a - 2b + c = - 2 \Rightarrow b = 1$
Hence,
$\Rightarrow E = KFA{T^2}$, K is a constant.
Hence option A is the correct option.
Note: The force which produces an acceleration $1c{m^2}$ in a body of mass of one gram, in its direction is called dyne. IN the CGS system we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time. Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
JEE Main 2025 Exam Pattern: Marking Scheme, Syllabus
Trending doubts
JEE Main Chemistry Exam Pattern 2025
Collision - Important Concepts and Tips for JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details
JEE Main 2022 June 25 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
JEE Main Maths Paper Pattern 2025
Electromagnetic Waves Chapter - Physics JEE Main