
If \[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\] , then
(a) \[f\] is derivable for all \[x\], with $\left| x \right|<1$
(b) $f$ is not derivable at $x=1$
(c) $f$ is not derivable at \[x=-1\]
(d) \[f\] is derivable for all \[x\], with \[\left| x \right|>1\]
Answer
133.8k+ views
Hint: Check the differentiability of f(x) at the end points of its domain and check which option is matching with your answer. Also use the half angle formula in terms of “tan” for substitution.
In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
\[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\]
Now, to simplify the problem substitute
$x=\tan \theta $ In the above problem. Therefore, $\theta ={{\tan }^{-1}}x$…………………………………. (1)
\[\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)\]
To proceed further we should know the Half Angle formula for \[\sin 2\theta \] which is given below,
Formula:
\[\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}\]
Therefore \[f(x)\] will become,
\[\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\] ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
\[{{\sin }^{-1}}\left( \sin x \right)=-\pi -x\] For \[x<\dfrac{-\pi }{2}\]
For \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\]
\[{{\sin }^{-1}}\left( \sin x \right)=\pi -x\] For \[x>\dfrac{\pi }{2}\]
We can write equation (2) according to above formulae by replacing ‘x’ with \[2\theta \]
As, \[f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\]
\[f(x)=-\pi -2\theta \] For \[2\theta <\dfrac{-\pi }{2}\]……………………………. (2)
\[f(x)=2\theta \] For \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]…………………….. (3)
\[f(x)=\pi -2\theta \] For \[2\theta >\dfrac{\pi }{2}\]……………………………… (4)
Before substituting the value of \[\theta \] we will first convert limits,
As, \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]
Dividing by 2 we will get,
\[\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}\]
Take tangent of all angles,
\[\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -1\le \tan \theta \le 1\]
From (1) we can write above equation as,
\[\therefore -1\le x\le 1\]………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting $x=\tan \theta $ from (1) and replacing limits with the help of (5),
\[f(x)=-\pi -2\tan x\] For \[x<-1\]
\[f(x)=2\tan x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2\tan x\] For \[x>1\]
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1\]\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at -1…………………………………………. (6)
\[L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at 1………………………………………….. (7)
As, f(x) is not differentiable at \[x=1\] and \[x=-1\] we can say that f(x) is only differentiable only in its domain with open intervals i.e. In \[(-1,1)\].
\[\because \][From (6) and (7)]
The domain can also be expressed as \[\left| x \right|<1\]
This can be shown as follows,
\[\left| x \right|<1\equiv \] \[x<1\] And \[-x<1\]
\[\equiv \]\[x\in [0,1)\] And \[x>-1\]
\[\equiv \]\[x\in [0,1)\] And \[x\in (-1,0]\]
\[\left| x \right|<1\] \[\equiv \] \[x\in (-1,1)\]
Option (a) (b) and (c) are the correct answers.
Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
\[f(x)=-\pi -2{{\tan }^{-1}}x\] For \[x<-1\]
\[f(x)=2{{\tan }^{-1}}x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2{{\tan }^{-1}}x\] For \[x>1\]
In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
\[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\]
Now, to simplify the problem substitute
$x=\tan \theta $ In the above problem. Therefore, $\theta ={{\tan }^{-1}}x$…………………………………. (1)
\[\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)\]
To proceed further we should know the Half Angle formula for \[\sin 2\theta \] which is given below,
Formula:
\[\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}\]
Therefore \[f(x)\] will become,
\[\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\] ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
\[{{\sin }^{-1}}\left( \sin x \right)=-\pi -x\] For \[x<\dfrac{-\pi }{2}\]
For \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\]
\[{{\sin }^{-1}}\left( \sin x \right)=\pi -x\] For \[x>\dfrac{\pi }{2}\]
We can write equation (2) according to above formulae by replacing ‘x’ with \[2\theta \]
As, \[f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\]
\[f(x)=-\pi -2\theta \] For \[2\theta <\dfrac{-\pi }{2}\]……………………………. (2)
\[f(x)=2\theta \] For \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]…………………….. (3)
\[f(x)=\pi -2\theta \] For \[2\theta >\dfrac{\pi }{2}\]……………………………… (4)
Before substituting the value of \[\theta \] we will first convert limits,
As, \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]
Dividing by 2 we will get,
\[\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}\]
Take tangent of all angles,
\[\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -1\le \tan \theta \le 1\]
From (1) we can write above equation as,
\[\therefore -1\le x\le 1\]………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting $x=\tan \theta $ from (1) and replacing limits with the help of (5),
\[f(x)=-\pi -2\tan x\] For \[x<-1\]
\[f(x)=2\tan x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2\tan x\] For \[x>1\]
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1\]\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at -1…………………………………………. (6)
\[L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at 1………………………………………….. (7)
As, f(x) is not differentiable at \[x=1\] and \[x=-1\] we can say that f(x) is only differentiable only in its domain with open intervals i.e. In \[(-1,1)\].
\[\because \][From (6) and (7)]
The domain can also be expressed as \[\left| x \right|<1\]
This can be shown as follows,
\[\left| x \right|<1\equiv \] \[x<1\] And \[-x<1\]
\[\equiv \]\[x\in [0,1)\] And \[x>-1\]
\[\equiv \]\[x\in [0,1)\] And \[x\in (-1,0]\]
\[\left| x \right|<1\] \[\equiv \] \[x\in (-1,1)\]
Option (a) (b) and (c) are the correct answers.
Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
\[f(x)=-\pi -2{{\tan }^{-1}}x\] For \[x<-1\]
\[f(x)=2{{\tan }^{-1}}x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2{{\tan }^{-1}}x\] For \[x>1\]
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Class 10 Hindi Sample Papers 2024-25
