
if \[\hat n = a\hat i + b\hat j\] is perpendicular to the vector \[\left( {\hat i + \hat j} \right)\]. Then the value of \[a\] and \[b\] may be:
(A) \[1, - 1\]
(B) \[\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}\]
(C) \[1,0\]
(D) \[\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}\]
Answer
232.8k+ views
Hint: The cap on the \[n\] vector signifies that \[n\] is a unit vector, hence it has a magnitude equal to 1. Two vectors which are perpendicular must have a dot product equal to zero.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

