
if \[\hat n = a\hat i + b\hat j\] is perpendicular to the vector \[\left( {\hat i + \hat j} \right)\]. Then the value of \[a\] and \[b\] may be:
(A) \[1, - 1\]
(B) \[\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}\]
(C) \[1,0\]
(D) \[\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}\]
Answer
232.8k+ views
Hint: The cap on the \[n\] vector signifies that \[n\] is a unit vector, hence it has a magnitude equal to 1. Two vectors which are perpendicular must have a dot product equal to zero.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

