
If ${K_i}$ and ${K_p}$ are the effective spring constant in series and parallel combination of springs as shown in figure, find \[\dfrac{{{K_i}}}{{{K_p}}}\].

A. 9/2
B. 3/7
C. 2/9
D. 7/3
Answer
147k+ views
Hint: Try to recall the concept of dividing current in branches having resistance \[{R_1}\] and \[{R_2}\] which are firstly connected in series and secondly in parallel. From that concept we will get the idea of adding spring constants, either springs are connected in series or connected in parallel. And then simply take the ratio of and we will get the answer.
Complete step by step answer:
First we will see the concept of adding spring constants when they are connected in
1. Series
2. Parallel
Case:1 When Springs are connected in series.
When two spring are connected in series having spring constants \[{K_1}\] and \[{K_2}\] as shown in below figure

Then the resulting Spring constant ${K_r}$ is given by the formula:
\[\dfrac{1}{{{K_{}}}} = \dfrac{1}{{{K_1}}} + \dfrac{1}{{{K_2}}}\]
Now from the question
\[{K_1} = K\]
\[{K_2} = 2K\]
Putting values in formula
\[\dfrac{1}{{{K_r}}} = \dfrac{1}{K} + \dfrac{1}{{2K}}\]
\[\dfrac{1}{{{K_r}}} = \dfrac{{2K + K}}{{2{K^2}}}\]
\[\dfrac{1}{{{K_r}}} = \dfrac{3}{{2K}}\]
\[{K_r} = \dfrac{{2K}}{3}\]
Case 2: When springs are connected in parallel
When two spring are connected in parallel having spring constants \[{K_1}\] and \[{K_2}\] as shown in below figure

Then the resulting Spring constant \[{K_p}\] is given by the formula:
\[{K_p} = {K_1} + {K_2}\]
Given values of \[{K_1}\] and \[{K_2}\]from question:
\[{K_1} = K\]
\[{K_2} = 2K\]
Putting values in above equation:
\[{K_p} = K + 2K\]
\[{K_p} = 3K\]
Now we have both spring constant
\[\dfrac{{{K_i}}}{{{K_p}}} = \dfrac{{{K_r}}}{{{K_p}}} = \dfrac{{\dfrac{{2K}}{3}}}{{3K}}\]
\[\dfrac{{{K_i}}}{{{K_p}}} = \dfrac{2}{9}\]
Hence, option C is correct.
Note: This concept can be used to combine two springs and replace it with a new one. Not only we are bound to combine two springs we can also combine many strings. If the spring constant of a spring is high then it is difficult to stretch it more while spring having less or low spring constant can be elongated much more than the previous one.
Complete step by step answer:
First we will see the concept of adding spring constants when they are connected in
1. Series
2. Parallel
Case:1 When Springs are connected in series.
When two spring are connected in series having spring constants \[{K_1}\] and \[{K_2}\] as shown in below figure

Then the resulting Spring constant ${K_r}$ is given by the formula:
\[\dfrac{1}{{{K_{}}}} = \dfrac{1}{{{K_1}}} + \dfrac{1}{{{K_2}}}\]
Now from the question
\[{K_1} = K\]
\[{K_2} = 2K\]
Putting values in formula
\[\dfrac{1}{{{K_r}}} = \dfrac{1}{K} + \dfrac{1}{{2K}}\]
\[\dfrac{1}{{{K_r}}} = \dfrac{{2K + K}}{{2{K^2}}}\]
\[\dfrac{1}{{{K_r}}} = \dfrac{3}{{2K}}\]
\[{K_r} = \dfrac{{2K}}{3}\]
Case 2: When springs are connected in parallel
When two spring are connected in parallel having spring constants \[{K_1}\] and \[{K_2}\] as shown in below figure

Then the resulting Spring constant \[{K_p}\] is given by the formula:
\[{K_p} = {K_1} + {K_2}\]
Given values of \[{K_1}\] and \[{K_2}\]from question:
\[{K_1} = K\]
\[{K_2} = 2K\]
Putting values in above equation:
\[{K_p} = K + 2K\]
\[{K_p} = 3K\]
Now we have both spring constant
\[\dfrac{{{K_i}}}{{{K_p}}} = \dfrac{{{K_r}}}{{{K_p}}} = \dfrac{{\dfrac{{2K}}{3}}}{{3K}}\]
\[\dfrac{{{K_i}}}{{{K_p}}} = \dfrac{2}{9}\]
Hence, option C is correct.
Note: This concept can be used to combine two springs and replace it with a new one. Not only we are bound to combine two springs we can also combine many strings. If the spring constant of a spring is high then it is difficult to stretch it more while spring having less or low spring constant can be elongated much more than the previous one.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
