
If $\left| z \right| = \left| \omega \right|,\omega \ne 0$and$\arg \left( z \right) + \arg \left( \omega \right) = \pi $, then $z = $
$
{\text{a}}{\text{. }} - \omega \\
{\text{b}}{\text{. }}\omega \\
{\text{c}}{\text{. }}\varpi \\
{\text{d}}{\text{. }} - \varpi \\
$
Answer
220.8k+ views
Hint: Assume $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

