Answer
Verified
112.8k+ views
Hint: Assume $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Radius of the largest circle which passes through -class-11-maths-JEE_Main
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs