If $lmn = 1$, show that
$\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Answer
Verified
116.4k+ views
Hint- Simplify the L.H.S and reduce it to a single term and try to cancel out numerator and denominator which gives unit value.
Given: $lmn = 1$
To prove: $\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Taking first term, \[\dfrac{1}{{1 + l + {m^{ - 1}}}}\]
$
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} \\
= \dfrac{m}{{m + lm + 1}} \\
$
Taking second term, \[\dfrac{1}{{1 + m + {n^{ - 1}}}}\]
\[
= \dfrac{1}{{1 + m + \dfrac{1}{n}}} \\
= \dfrac{1}{{1 + m + lm}}{\text{ }}\left\{ {\because lmn = 1 \Rightarrow \dfrac{1}{n} = lm} \right\} \\
\]
Taking third term, \[\dfrac{1}{{1 + n + {l^{ - 1}}}}\]
Multiply and divide by $lm$, we get:
\[
= \dfrac{1}{{1 + n + {l^{ - 1}}}} \times \dfrac{{lm}}{{lm}} \\
= \dfrac{{lm}}{{lm + lmn + {l^{ - 1}}lm}} \\
= \dfrac{{lm}}{{lm + 1 + m}}{\text{ }}\left\{ {\because lmn = 1} \right\} \\
\]
Now, combining all these terms to form the L.H.S, we get:
\[
{\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} \\
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} + \dfrac{1}{{1 + m + \dfrac{1}{n}}} + \dfrac{1}{{1 + n + \dfrac{1}{l}}} \\
= \dfrac{m}{{m + lm + 1}} + \dfrac{1}{{1 + m + lm}} + \dfrac{{lm}}{{lm + 1 + m}} \\
\]
Since, these have common denominator, hence we can add them directly.
\[
= \dfrac{{m + 1 + lm}}{{m + lm + 1}} \\
= 1 \\
= {\text{R}}{\text{.H}}{\text{.S}} \\
\]
Hence Proved.
Note- Whenever you see equations like these, always try to look for patterns to reduce the fraction and try to make denominators of each term equal in order to add the terms easily.
Given: $lmn = 1$
To prove: $\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Taking first term, \[\dfrac{1}{{1 + l + {m^{ - 1}}}}\]
$
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} \\
= \dfrac{m}{{m + lm + 1}} \\
$
Taking second term, \[\dfrac{1}{{1 + m + {n^{ - 1}}}}\]
\[
= \dfrac{1}{{1 + m + \dfrac{1}{n}}} \\
= \dfrac{1}{{1 + m + lm}}{\text{ }}\left\{ {\because lmn = 1 \Rightarrow \dfrac{1}{n} = lm} \right\} \\
\]
Taking third term, \[\dfrac{1}{{1 + n + {l^{ - 1}}}}\]
Multiply and divide by $lm$, we get:
\[
= \dfrac{1}{{1 + n + {l^{ - 1}}}} \times \dfrac{{lm}}{{lm}} \\
= \dfrac{{lm}}{{lm + lmn + {l^{ - 1}}lm}} \\
= \dfrac{{lm}}{{lm + 1 + m}}{\text{ }}\left\{ {\because lmn = 1} \right\} \\
\]
Now, combining all these terms to form the L.H.S, we get:
\[
{\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} \\
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} + \dfrac{1}{{1 + m + \dfrac{1}{n}}} + \dfrac{1}{{1 + n + \dfrac{1}{l}}} \\
= \dfrac{m}{{m + lm + 1}} + \dfrac{1}{{1 + m + lm}} + \dfrac{{lm}}{{lm + 1 + m}} \\
\]
Since, these have common denominator, hence we can add them directly.
\[
= \dfrac{{m + 1 + lm}}{{m + lm + 1}} \\
= 1 \\
= {\text{R}}{\text{.H}}{\text{.S}} \\
\]
Hence Proved.
Note- Whenever you see equations like these, always try to look for patterns to reduce the fraction and try to make denominators of each term equal in order to add the terms easily.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs