If \[{\log _{\dfrac{1}{2}}}\left( {{x^2} - 5x + 7} \right) > 0\], then find the exhaustive range of values of x.
A. \[\left( { - \infty ,{\rm{ }}2} \right) \cup \left( {3,{\rm{ }}\infty } \right)\]
B. \[\left( {2,3} \right)\]
C. \[\left( { - \infty ,{\rm{ }}1} \right) \cup \left( {1,{\rm{ }}2} \right) \cup \left( {2,{\rm{ }}\infty } \right)\]
D. None of these
Answer
Verified
123k+ views
Hint: In order to solve the question, first check whether the given term is positive. Next, write the condition for the given term to be positive. Finally, factorize and find the exhaustive range.
Formula used:
If \[\left( {x - a} \right)\left( {x - b} \right) < 0\], then \[x \in \left( {a,b} \right)\]
Complete step-by-step solution :
Given that
\[{\log _{\dfrac{1}{2}}}\left( {{x^2} - 5x + 7} \right) > 0\]
If the base of the logarithm is less than 1 and the value of the logarithm is greater than 0, then the function must be less than 1.
That is the given value is positive. For the given value to be positive
\[\left( {{x^2} - 5x + 7} \right) < 1\]
\[{x^2} - 5x + 6 < 0\]
\[\left( {x - 2} \right)\left( {x - 3} \right) < 0\]
That is
\[x \in \left( {2,3} \right)\]
Hence option B is the correct answer.
Additional information:
There are 2 types of logarithmic functions.
The logarithmic function with base 10 or 2 is known as a common logarithm.
The logarithmic function with base e is known as natural logarithmic.
The base of the logarithm can be a positive integer not equal to 1.
The argument of the logarithm is always greater than zero. A negative argument does not exist.
Note: Students can make mistakes while taking the condition for the given term to be positive. Remember that range means the set of all output values. Students should also be careful while factorizing the equation.
Formula used:
If \[\left( {x - a} \right)\left( {x - b} \right) < 0\], then \[x \in \left( {a,b} \right)\]
Complete step-by-step solution :
Given that
\[{\log _{\dfrac{1}{2}}}\left( {{x^2} - 5x + 7} \right) > 0\]
If the base of the logarithm is less than 1 and the value of the logarithm is greater than 0, then the function must be less than 1.
That is the given value is positive. For the given value to be positive
\[\left( {{x^2} - 5x + 7} \right) < 1\]
\[{x^2} - 5x + 6 < 0\]
\[\left( {x - 2} \right)\left( {x - 3} \right) < 0\]
That is
\[x \in \left( {2,3} \right)\]
Hence option B is the correct answer.
Additional information:
There are 2 types of logarithmic functions.
The logarithmic function with base 10 or 2 is known as a common logarithm.
The logarithmic function with base e is known as natural logarithmic.
The base of the logarithm can be a positive integer not equal to 1.
The argument of the logarithm is always greater than zero. A negative argument does not exist.
Note: Students can make mistakes while taking the condition for the given term to be positive. Remember that range means the set of all output values. Students should also be careful while factorizing the equation.
Recently Updated Pages
If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main
The probability of guessing the correct answer to a class 10 maths JEE_Main
A man on tour travels first 160 km at 64 kmhr and -class-10-maths-JEE_Main
In a family each daughter has the same number of brothers class 10 maths JEE_Main
The circumference of the base of a 24 m high conical class 10 maths JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main 2025 22 Jan Shift 1 Question Paper with Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions
JEE Main Question Papers 2025
JEE Main 27 January 2024 Shift 1 Question Paper with Solutions
JEE Main Sample Paper (Set 1) with Solutions (2024-25)
Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics
NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles
NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume
NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability
Statistics Class 10 Notes CBSE Maths Chapter 13 (Free PDF Download)
Surface Areas and Volumes Class 10 Notes CBSE Maths Chapter 12 (Free PDF Download)