The probability of guessing the correct answer to a certain test is \[\dfrac{p}{{12}}\]. If the probability of not guessing the correct answer to these questions is \[\dfrac{3}{4}\], then \[p\] is equal to ________.
A. 3
B. 4
C. 2
D. 1
Answer
Verified
122.7k+ views
Hint: First, we will find the sum of the probabilities of guessing the correct answer and not guessing the correct answer and then take the sum equals to 1. Then we will simplify the obtained equation to the value of \[p\].
Complete step-by-step solution:
Given that the probability of guessing the correct answer is \[\dfrac{p}{{12}}\] and probability of not guessing the correct answer is \[\dfrac{3}{4}\].
We know that the sum of the probability of guessing the correct answer and not guessing the correct answer to the question is 1.
Adding the given probabilities and taking it equals to 1, we get
\[
\Rightarrow \dfrac{p}{{12}} + \dfrac{3}{4} = 1 \\
\Rightarrow \dfrac{{p + 9}}{{12}} = 1 \\
\Rightarrow p + 9 = 12 \\
\Rightarrow p = 12 - 9 \\
\Rightarrow p = 3 \\
\]
Therefore, \[p\] is equal to \[3\].
Hence, the option A is correct.
Note: In this question, the probability of guess a certain question is \[{\text{P}}\left( {\text{E}} \right)\] and probability of not guessing answer is \[{\text{P}}\left( {\overline {\text{E}} } \right)\]. Since \[{\text{P}}\left( {\text{E}} \right) + {\text{P}}\left( {\overline {\text{E}} } \right) = 1\]. Thus, we have taken the sum equals to 1.
Complete step-by-step solution:
Given that the probability of guessing the correct answer is \[\dfrac{p}{{12}}\] and probability of not guessing the correct answer is \[\dfrac{3}{4}\].
We know that the sum of the probability of guessing the correct answer and not guessing the correct answer to the question is 1.
Adding the given probabilities and taking it equals to 1, we get
\[
\Rightarrow \dfrac{p}{{12}} + \dfrac{3}{4} = 1 \\
\Rightarrow \dfrac{{p + 9}}{{12}} = 1 \\
\Rightarrow p + 9 = 12 \\
\Rightarrow p = 12 - 9 \\
\Rightarrow p = 3 \\
\]
Therefore, \[p\] is equal to \[3\].
Hence, the option A is correct.
Note: In this question, the probability of guess a certain question is \[{\text{P}}\left( {\text{E}} \right)\] and probability of not guessing answer is \[{\text{P}}\left( {\overline {\text{E}} } \right)\]. Since \[{\text{P}}\left( {\text{E}} \right) + {\text{P}}\left( {\overline {\text{E}} } \right) = 1\]. Thus, we have taken the sum equals to 1.
Recently Updated Pages
If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main
The probability of guessing the correct answer to a class 10 maths JEE_Main
A man on tour travels first 160 km at 64 kmhr and -class-10-maths-JEE_Main
In a family each daughter has the same number of brothers class 10 maths JEE_Main
The circumference of the base of a 24 m high conical class 10 maths JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Trending doubts
JEE Main Physics Question Paper with Answer Keys and Solutions
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Physics Online Mock Test for Class 12
JEE Main Chemistry Mock Test 2025
JEE Main Physics Mock Test 2025
JEE Main 2025 Exam Date Released: Check the Complete Exam Schedule
Other Pages
Statistics Class 10 Notes CBSE Maths Chapter 13 (Free PDF Download)
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
India Republic Day 2025: History and Importance of Celebration
JEE Mains 2025 22nd Jan Shift 1 Question Paper with Solutions – Download PDF
Republic Day Speech: Celebrating India's Independence
Essay on Christmas: Celebrating the Spirit of the Season