
The probability of guessing the correct answer to a certain test is \[\dfrac{p}{{12}}\]. If the probability of not guessing the correct answer to these questions is \[\dfrac{3}{4}\], then \[p\] is equal to ________.
A. 3
B. 4
C. 2
D. 1
Answer
232.8k+ views
Hint: First, we will find the sum of the probabilities of guessing the correct answer and not guessing the correct answer and then take the sum equals to 1. Then we will simplify the obtained equation to the value of \[p\].
Complete step-by-step solution:
Given that the probability of guessing the correct answer is \[\dfrac{p}{{12}}\] and probability of not guessing the correct answer is \[\dfrac{3}{4}\].
We know that the sum of the probability of guessing the correct answer and not guessing the correct answer to the question is 1.
Adding the given probabilities and taking it equals to 1, we get
\[
\Rightarrow \dfrac{p}{{12}} + \dfrac{3}{4} = 1 \\
\Rightarrow \dfrac{{p + 9}}{{12}} = 1 \\
\Rightarrow p + 9 = 12 \\
\Rightarrow p = 12 - 9 \\
\Rightarrow p = 3 \\
\]
Therefore, \[p\] is equal to \[3\].
Hence, the option A is correct.
Note: In this question, the probability of guess a certain question is \[{\text{P}}\left( {\text{E}} \right)\] and probability of not guessing answer is \[{\text{P}}\left( {\overline {\text{E}} } \right)\]. Since \[{\text{P}}\left( {\text{E}} \right) + {\text{P}}\left( {\overline {\text{E}} } \right) = 1\]. Thus, we have taken the sum equals to 1.
Complete step-by-step solution:
Given that the probability of guessing the correct answer is \[\dfrac{p}{{12}}\] and probability of not guessing the correct answer is \[\dfrac{3}{4}\].
We know that the sum of the probability of guessing the correct answer and not guessing the correct answer to the question is 1.
Adding the given probabilities and taking it equals to 1, we get
\[
\Rightarrow \dfrac{p}{{12}} + \dfrac{3}{4} = 1 \\
\Rightarrow \dfrac{{p + 9}}{{12}} = 1 \\
\Rightarrow p + 9 = 12 \\
\Rightarrow p = 12 - 9 \\
\Rightarrow p = 3 \\
\]
Therefore, \[p\] is equal to \[3\].
Hence, the option A is correct.
Note: In this question, the probability of guess a certain question is \[{\text{P}}\left( {\text{E}} \right)\] and probability of not guessing answer is \[{\text{P}}\left( {\overline {\text{E}} } \right)\]. Since \[{\text{P}}\left( {\text{E}} \right) + {\text{P}}\left( {\overline {\text{E}} } \right) = 1\]. Thus, we have taken the sum equals to 1.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

