If \[M{\text{ }}\left( {A,{\text{ }}Z} \right)\], \[{M_p}\], and \[{M_n}\] denote the masses of the nucleus ${}_Z^AX$ proton and neutron respectively in units of u \[\left( {1u{\text{ }} = {\text{ }}931.5MeV/{C^2}} \right)\] and BE represents its bonding energy is MeV, then-
(A) $M(A,Z) = Z{M_p} + (A - Z){M_n} - BE$
(B) $M(A,Z) = Z{M_p} + (A - Z){M_n} + \frac{{BE}}{{{c^2}}}$
(C) $M(A,Z) = Z{M_p} + (A - Z){M_n} - \frac{{BE}}{{{c^2}}}$
(D) $M(A,Z) = Z{M_p} + (A - Z){M_n} + BE$
Answer
Verified
116.4k+ views
Hint Einstein’s mass energy relation is \[E = m{c^2}\], here, E is the binding energy, m is the mass defect and c is the speed of light. Mass defect is the mass anomaly in calculating mass in a nucleus. This mass defect times \[{c^2}\] is equivalent to Binding Energy (BE).
Complete step-by-step solution
Binding energy: The neutrons and protons in a stable nucleus are held together by nuclear forces and energy is needed to pull them infinitely apart, this energy is called binding energy.
$BE = \Delta m \times {c^2}$
Mass defect: It is found that the mass of the nucleus is always less than the sum of the masses of its constituent nucleons in free state, this difference in mass is called mass defect. It is given by,
$\Delta m = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z)$
Where,
\[M{\text{ }}\left( {A,{\text{ }}Z} \right)\], \[{M_p}\], and \[{M_n}\] are mass of nucleus, proton and neutron respectively. and Z is mass and atomic number.
Thus, by substituting the value of ∆m in BE, we get
$\begin{gathered}
BE = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \times {c^2} \\
\frac{{BE}}{{{c^2}}} = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \\
M(A,Z) = \{ Z{M_p} + (A - Z){M_n}\} - \frac{{BE}}{{{c^2}}} \\
\end{gathered} $
Hence, the correct option is C
Note The binding energy is expressed in J when mass defect is in kg. And for converting from mass to energy, one needs to multiply \[{c^2}\] to it. To convert from Energy to mass, it has to be divided by \[{c^2}\]. If mass defect is in amu then binding energy is 931 MeV times \[\Delta m\].
In subjects like general relativity and quantum mechanics, the factor \[{c^2}\] that differentiates between mass and energy is ignored; the two quantities are considered equivalent. Just like how the number 1 is ignored after being multiplied to some arbitrary quantity.
Complete step-by-step solution
Binding energy: The neutrons and protons in a stable nucleus are held together by nuclear forces and energy is needed to pull them infinitely apart, this energy is called binding energy.
$BE = \Delta m \times {c^2}$
Mass defect: It is found that the mass of the nucleus is always less than the sum of the masses of its constituent nucleons in free state, this difference in mass is called mass defect. It is given by,
$\Delta m = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z)$
Where,
\[M{\text{ }}\left( {A,{\text{ }}Z} \right)\], \[{M_p}\], and \[{M_n}\] are mass of nucleus, proton and neutron respectively. and Z is mass and atomic number.
Thus, by substituting the value of ∆m in BE, we get
$\begin{gathered}
BE = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \times {c^2} \\
\frac{{BE}}{{{c^2}}} = \{ Z{M_p} + (A - Z){M_n}\} - M(A,Z) \\
M(A,Z) = \{ Z{M_p} + (A - Z){M_n}\} - \frac{{BE}}{{{c^2}}} \\
\end{gathered} $
Hence, the correct option is C
Note The binding energy is expressed in J when mass defect is in kg. And for converting from mass to energy, one needs to multiply \[{c^2}\] to it. To convert from Energy to mass, it has to be divided by \[{c^2}\]. If mass defect is in amu then binding energy is 931 MeV times \[\Delta m\].
In subjects like general relativity and quantum mechanics, the factor \[{c^2}\] that differentiates between mass and energy is ignored; the two quantities are considered equivalent. Just like how the number 1 is ignored after being multiplied to some arbitrary quantity.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Young's Double Slit Experiment Derivation
When Barium is irradiated by a light of lambda 4000oversetomathopA class 12 physics JEE_Main
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main