
If m = log20 and n = log25, then the value of x, so that $2\log \left( x-4 \right)=2m-n$ is equal to
(a). 6
(b). 8
(c). 10
(d). 12
Answer
233.1k+ views
Hint: Substitute the value of m and n in the given logarithmic expression , Now use property of log such as ${{\log }_{b}}\left( \dfrac{M}{N} \right)={{\log }_{b}}M-{{\log }_{b}}N$ and ${{\log }_{b}}\left( {{M}^{k}} \right)=k{{\log }_{b}}M$ to obtain a quadratic equation in x , solve the obtained equation to get the answer.
Complete step-by-step answer:
It is given that m = log20 and n = log25
Let us consider the logarithmic equation,
$2\log \left( x-4 \right)=2m-n$
Put the value of the m and n, we get
$2\log \left( x-4 \right)=2\log 20-\log 25$
By using rule, the logarithm of the exponential number
$\log {{\left( x-4 \right)}^{2}}=\log {{20}^{2}}-\log 25$
By using rule, the logarithm of the quotient
$\log {{\left( x-4 \right)}^{2}}=\log \left( \dfrac{{{20}^{2}}}{25} \right)$
Cancelling the logarithm, we get
${{\left( x-4 \right)}^{2}}=\left( \dfrac{{{20}^{2}}}{25} \right)$
${{\left( x-4 \right)}^{2}}=\left( \dfrac{20\times 20}{25} \right)=\left( \dfrac{4\times 5\times 4\times 5}{5\times 5} \right)=4\times 4$
${{\left( x-4 \right)}^{2}}={{4}^{2}}$
Taking the squaring root on both sides, we get
$\left( x-4 \right)=4$
$x=4+4=8$
Hence, the required value of x is 8.
Therefore, the correct option is (b).
Note: The possibility for the mistake is that you might get confused about the difference between the $\log (x)$ and $\ln (x)$. Where $\log (x)$ is the logarithm to the base 10 and $\ln (x)$ is the logarithm to the base e.
Complete step-by-step answer:
It is given that m = log20 and n = log25
Let us consider the logarithmic equation,
$2\log \left( x-4 \right)=2m-n$
Put the value of the m and n, we get
$2\log \left( x-4 \right)=2\log 20-\log 25$
By using rule, the logarithm of the exponential number
$\log {{\left( x-4 \right)}^{2}}=\log {{20}^{2}}-\log 25$
By using rule, the logarithm of the quotient
$\log {{\left( x-4 \right)}^{2}}=\log \left( \dfrac{{{20}^{2}}}{25} \right)$
Cancelling the logarithm, we get
${{\left( x-4 \right)}^{2}}=\left( \dfrac{{{20}^{2}}}{25} \right)$
${{\left( x-4 \right)}^{2}}=\left( \dfrac{20\times 20}{25} \right)=\left( \dfrac{4\times 5\times 4\times 5}{5\times 5} \right)=4\times 4$
${{\left( x-4 \right)}^{2}}={{4}^{2}}$
Taking the squaring root on both sides, we get
$\left( x-4 \right)=4$
$x=4+4=8$
Hence, the required value of x is 8.
Therefore, the correct option is (b).
Note: The possibility for the mistake is that you might get confused about the difference between the $\log (x)$ and $\ln (x)$. Where $\log (x)$ is the logarithm to the base 10 and $\ln (x)$ is the logarithm to the base e.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

