If n is the orbit number of the electron in a hydrogen atom, the correct statement among the following is
A) Electron energy increases as n increases.
B) Hydrogen emits infrared rays for the electron transition from n=∞ to n=1.
C) Electron energy is zero for n=1.
D) Electron energy varies as ${n^2}$
Answer
Verified
122.4k+ views
Hint: The allowed energies of the electron in the hydrogen atom are:
${E_n} = - \dfrac{{13.6}}{{{n^2}}}eV$
Here n is called the principle quantum number. The values ${E_n}$ are the possible value for the total electron energy in the hydrogen atom. Electron energy increases with orbit number.
In these types of questions, we will check the statements whether they are in the correct relation with the formula or not.
Complete Solution:
Energy of electron is given by-
${E_n} = - \dfrac{{13.6}}{{{n^2}}}eV$
For the hydrogen atom, the energy levels of the electron only depends on the value of n.
As the value of n increases, the magnitude of energy of the electron decreases but due to the negative sign, energy of the electron increases.
Hence, Electron energy increases as n increases.
Option A is correct.
Note: It should be noted that electron energy can never be zero for n=1 as it has value equals to -13.6eV for n=1.
The energy is always going to be a negative number, and the ground state, n=1 has the most negative value. This is because the energy of an electron in orbit is relative to the energy of an electron that has been completely separated from its nucleus, n=∞ which is defined to have an energy of 0 eV
Electron energy does not vary as ${n^2}$. The energy of an electron in a Hydrogen atom is decided by principal quantum number (n) only. The number of degenerate orbitals is equal to the number of orbitals in a principal quantum level and is given by ${n^2}$.
${E_n} = - \dfrac{{13.6}}{{{n^2}}}eV$
Here n is called the principle quantum number. The values ${E_n}$ are the possible value for the total electron energy in the hydrogen atom. Electron energy increases with orbit number.
In these types of questions, we will check the statements whether they are in the correct relation with the formula or not.
Complete Solution:
Energy of electron is given by-
${E_n} = - \dfrac{{13.6}}{{{n^2}}}eV$
For the hydrogen atom, the energy levels of the electron only depends on the value of n.
As the value of n increases, the magnitude of energy of the electron decreases but due to the negative sign, energy of the electron increases.
Hence, Electron energy increases as n increases.
Option A is correct.
Note: It should be noted that electron energy can never be zero for n=1 as it has value equals to -13.6eV for n=1.
The energy is always going to be a negative number, and the ground state, n=1 has the most negative value. This is because the energy of an electron in orbit is relative to the energy of an electron that has been completely separated from its nucleus, n=∞ which is defined to have an energy of 0 eV
Electron energy does not vary as ${n^2}$. The energy of an electron in a Hydrogen atom is decided by principal quantum number (n) only. The number of degenerate orbitals is equal to the number of orbitals in a principal quantum level and is given by ${n^2}$.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main