Answer
Verified
112.8k+ views
Hint: We will use Snell’s law to derive the correct answer as the question is related to incident angle and refractive angle.
Formula Used:
In order to follow the quickest path from one medium to another medium, a ray changes its direction of travel. The refractive angle and the incident angle depend on the refractive index and the incident index of this system.
Snell’s law states that the ratio of the sine of the angles of incidence and refraction is equivalent to the reciprocal of the ratio of the indices of refraction.
So, according to Snell’s law we can derive the following equation:
\[\dfrac{{\sin {\theta _1}}}{{\sin {\theta _2}}} = \dfrac{{{n_1}}}{{{n_2}}}\].
Where, \[{\theta _1}\] and \[{\theta _2}\] are angle of incidence and angle of refraction respectively, and, \[{n_1}\] and \[{n_2}\] are the index of the incident medium and refractive medium respectively.
Complete step by step answer:
So, angle of incidence and angle of refraction depends upon the density of the medium by which the light passes through.
It means that if the medium is more densely, the quality of its indexes changes.
So, if \[{n_1} < {n_2}\], the angle of refraction is always smaller than the angle of incidence and if \[{n_1} > {n_2}\], the angle of refraction is always larger than the angle of incidence.
Let's imagine the index of the refractive medium is larger than the index of the incident medium, in such cases the light makes the larger angle in refracted medium than the angle made by the ray in incident medium as the density of the medium changed, the critical angle made by the ray changes accordingly.
So, if the incident angle is too large after reflecting in the system then the refracted angle will be very small as the index of the refractive medium is larger, thus we can say that \[{\theta _2} = {90^ \circ }\] almost.
Now, again using the Snell’s law:
\[\dfrac{{\sin {\theta _1}}}{{\sin {{90}^ \circ }}} = \dfrac{{{n_1}}}{{{n_2}}}\]
Or, \[\sin {\theta _i} = \dfrac{{{n_1}}}{{{n_2}}}\]
Or, \[{\theta _i} = {\sin ^{ - 1}}\left( {\dfrac{{{n_1}}}{{{n_2}}}} \right)\].
So, critical angle will get smaller when incident angle get large.
So, if the index of refraction is greater than the index of the incidence of a ray, then the angle of the incidence will be greater than the angle of the refraction.
\[\therefore \] Option \[(b)\], \[{\theta _1} > {\theta _2}\] is the correct choice.
Note: Refractive index of light is the ratio of speed of light and phase velocity of the light.
\[n = \dfrac{c}{v}\] .
The refractive index of water is \[1.33\] means that light travels \[1.33\] times slower in water than in a vacuum space.
Phase velocity is the velocity at which the phase of any \[1\] frequency of particle of the wave travels.
Formula Used:
In order to follow the quickest path from one medium to another medium, a ray changes its direction of travel. The refractive angle and the incident angle depend on the refractive index and the incident index of this system.
Snell’s law states that the ratio of the sine of the angles of incidence and refraction is equivalent to the reciprocal of the ratio of the indices of refraction.
So, according to Snell’s law we can derive the following equation:
\[\dfrac{{\sin {\theta _1}}}{{\sin {\theta _2}}} = \dfrac{{{n_1}}}{{{n_2}}}\].
Where, \[{\theta _1}\] and \[{\theta _2}\] are angle of incidence and angle of refraction respectively, and, \[{n_1}\] and \[{n_2}\] are the index of the incident medium and refractive medium respectively.
Complete step by step answer:
So, angle of incidence and angle of refraction depends upon the density of the medium by which the light passes through.
It means that if the medium is more densely, the quality of its indexes changes.
So, if \[{n_1} < {n_2}\], the angle of refraction is always smaller than the angle of incidence and if \[{n_1} > {n_2}\], the angle of refraction is always larger than the angle of incidence.
Let's imagine the index of the refractive medium is larger than the index of the incident medium, in such cases the light makes the larger angle in refracted medium than the angle made by the ray in incident medium as the density of the medium changed, the critical angle made by the ray changes accordingly.
So, if the incident angle is too large after reflecting in the system then the refracted angle will be very small as the index of the refractive medium is larger, thus we can say that \[{\theta _2} = {90^ \circ }\] almost.
Now, again using the Snell’s law:
\[\dfrac{{\sin {\theta _1}}}{{\sin {{90}^ \circ }}} = \dfrac{{{n_1}}}{{{n_2}}}\]
Or, \[\sin {\theta _i} = \dfrac{{{n_1}}}{{{n_2}}}\]
Or, \[{\theta _i} = {\sin ^{ - 1}}\left( {\dfrac{{{n_1}}}{{{n_2}}}} \right)\].
So, critical angle will get smaller when incident angle get large.
So, if the index of refraction is greater than the index of the incidence of a ray, then the angle of the incidence will be greater than the angle of the refraction.
\[\therefore \] Option \[(b)\], \[{\theta _1} > {\theta _2}\] is the correct choice.
Note: Refractive index of light is the ratio of speed of light and phase velocity of the light.
\[n = \dfrac{c}{v}\] .
The refractive index of water is \[1.33\] means that light travels \[1.33\] times slower in water than in a vacuum space.
Phase velocity is the velocity at which the phase of any \[1\] frequency of particle of the wave travels.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking