Answer
Verified
112.8k+ views
Hint: When the charge is given to the metallic sphere, the electric field inside the sphere will be definitely zero in all conditions. But the charge density is varying depending on the amount of charge given to the solid metallic sphere.
Complete step by step solution
Given that,
The coulomb’s force between the two charges varies as $\dfrac{1}{{{r^3}}}$.
By Gauss’s law,
If the Coulomb's force is directly proportional to the $\dfrac{1}{{{r^3}}}$ is not valid.
The coulomb force is inversely proportional to the square of the distance, but here it is given that the coulomb force is inversely proportional to the cube of the distance. So, it is not valid.
$\phi \ne \dfrac{Q}{{{\varepsilon _0}}}$
This is a condition for the given Coulomb's force value.
Where, $\phi $ is the electric flux, $Q$ is the charge enclosed and ${\varepsilon _0}$ is the permittivity of free space.
For the electrostatic conditions the electric field is zero for both of conductor, $E = 0$
But, the charge density inside the metallic sphere is not equal to zero. It has some other values, when the charge is given to the solid metallic sphere.
Thus, the field inside the metallic sphere will be zero and the charge density of the metallic sphere will not be zero.
Hence, the option (D) is the correct answer.
Note: The electric flux of the system is directly proportional to the charge supplied to the system and the electric flux is inversely proportional to the permittivity of the free space. As the charge increases, the electric flux also increases, as the permittivity of the free space increases, the electric flux decreases.
Complete step by step solution
Given that,
The coulomb’s force between the two charges varies as $\dfrac{1}{{{r^3}}}$.
By Gauss’s law,
If the Coulomb's force is directly proportional to the $\dfrac{1}{{{r^3}}}$ is not valid.
The coulomb force is inversely proportional to the square of the distance, but here it is given that the coulomb force is inversely proportional to the cube of the distance. So, it is not valid.
$\phi \ne \dfrac{Q}{{{\varepsilon _0}}}$
This is a condition for the given Coulomb's force value.
Where, $\phi $ is the electric flux, $Q$ is the charge enclosed and ${\varepsilon _0}$ is the permittivity of free space.
For the electrostatic conditions the electric field is zero for both of conductor, $E = 0$
But, the charge density inside the metallic sphere is not equal to zero. It has some other values, when the charge is given to the solid metallic sphere.
Thus, the field inside the metallic sphere will be zero and the charge density of the metallic sphere will not be zero.
Hence, the option (D) is the correct answer.
Note: The electric flux of the system is directly proportional to the charge supplied to the system and the electric flux is inversely proportional to the permittivity of the free space. As the charge increases, the electric flux also increases, as the permittivity of the free space increases, the electric flux decreases.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking