Answer
Verified
109.2k+ views
Hint- First, We should convert the under root into its numerical value and try to bring in power of mn then add up all the power of mn which is equal to k.
Replacing the under-roots with their values, we get
$
{\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\\
$
Now, using the properties of exponents
$
\Rightarrow {\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {\left( {{a^x}} \right)^y} = {a^{xy}} \\
\Rightarrow {\left( {mn} \right)^{\dfrac{4}{2}}} \times {\left( {mn} \right)^{\dfrac{2}{6}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {a^x}{a^y} = {a^{x + y}} \\
\Rightarrow {\left( {mn} \right)^2} \times {\left( {mn} \right)^{\dfrac{1}{3}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^{2 + \dfrac{1}{3} + \dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^3} = {\left( {mn} \right)^k} \\
\Rightarrow \therefore k = 3 \\
$
∴the correct option is B.
Note- In this question we used the property saying when the bases are same powers get added Some more properties of exponents other than the two used in the above questions:
1. \[{\left( {ab} \right)^m} = {a^{^m}}{b^m}\]
2. \[{a^{ - n}} = {a^{\dfrac{1}{n}}}\]
3. \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]
4. \[{\left( {\dfrac{a}{b}} \right)^{ - n}} = {\left( {\dfrac{b}{a}} \right)^n}\]
5. \[{a^0} = 1\]
Replacing the under-roots with their values, we get
$
{\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\\
$
Now, using the properties of exponents
$
\Rightarrow {\left( {{m^4}{n^4}} \right)^{\dfrac{1}{2}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{6}}} \times {\left( {{m^2}{n^2}} \right)^{\dfrac{1}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {\left( {{a^x}} \right)^y} = {a^{xy}} \\
\Rightarrow {\left( {mn} \right)^{\dfrac{4}{2}}} \times {\left( {mn} \right)^{\dfrac{2}{6}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow \because {a^x}{a^y} = {a^{x + y}} \\
\Rightarrow {\left( {mn} \right)^2} \times {\left( {mn} \right)^{\dfrac{1}{3}}} \times {\left( {mn} \right)^{\dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^{2 + \dfrac{1}{3} + \dfrac{2}{3}}} = {\left( {mn} \right)^k} \\
\Rightarrow {\left( {mn} \right)^3} = {\left( {mn} \right)^k} \\
\Rightarrow \therefore k = 3 \\
$
∴the correct option is B.
Note- In this question we used the property saying when the bases are same powers get added Some more properties of exponents other than the two used in the above questions:
1. \[{\left( {ab} \right)^m} = {a^{^m}}{b^m}\]
2. \[{a^{ - n}} = {a^{\dfrac{1}{n}}}\]
3. \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]
4. \[{\left( {\dfrac{a}{b}} \right)^{ - n}} = {\left( {\dfrac{b}{a}} \right)^n}\]
5. \[{a^0} = 1\]
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main