Answer
Verified
110.4k+ views
Hint: For any vector to be a unit vector, the modulus of the vector or the scalar component of the vector has to be $1$ . Suppose the vector given in the question are $\overrightarrow a $ and $\overrightarrow b $ , then the question implies that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Formulae used:
Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Parallelogram law of vector subtraction;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Complete step by step solution:
Given that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to vector addition property;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a$ and $\overrightarrow b$ are the unit vectors and $\theta $ is the angle between the vectors.
For the first part of the question we have to find the value of $\theta $ such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is $1$. To do this we equation the formula of addition of vectors with the value $1$ .
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $ $...\left( 1 \right)$
$\left| {\overrightarrow a + \overrightarrow b } \right| = 1$ $...\left( 2 \right)$
Equating $\left( 1 \right)$ and $\left( 2 \right)$
$ \Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1$
$ \Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1$ (Squaring both sides)
$ \Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}$
$ \Rightarrow 2(1 + \cos \theta ) = 1$
$ \Rightarrow \cos \theta = - \dfrac{1}{2}$
To find the angle between the two vectors $\overrightarrow a $ and $\overrightarrow b $, we find the principal value of $\theta $ for which $\cos \theta = - \dfrac{1}{2}$ .
$ \Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})$
$ \Rightarrow \theta = 120^\circ $
Therefore the vectors $\overrightarrow a $ and $\overrightarrow b $ have an angle of $120^\circ $ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
\[ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ } \]
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3 $
Hence, the magnitude of the difference of the vectors is $\sqrt 3$.
Therefore the option that matches the solution is (B) $\sqrt 3 ,120^\circ.$
Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Formulae used:
Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Parallelogram law of vector subtraction;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Complete step by step solution:
Given that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to vector addition property;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a$ and $\overrightarrow b$ are the unit vectors and $\theta $ is the angle between the vectors.
For the first part of the question we have to find the value of $\theta $ such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is $1$. To do this we equation the formula of addition of vectors with the value $1$ .
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $ $...\left( 1 \right)$
$\left| {\overrightarrow a + \overrightarrow b } \right| = 1$ $...\left( 2 \right)$
Equating $\left( 1 \right)$ and $\left( 2 \right)$
$ \Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1$
$ \Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1$ (Squaring both sides)
$ \Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}$
$ \Rightarrow 2(1 + \cos \theta ) = 1$
$ \Rightarrow \cos \theta = - \dfrac{1}{2}$
To find the angle between the two vectors $\overrightarrow a $ and $\overrightarrow b $, we find the principal value of $\theta $ for which $\cos \theta = - \dfrac{1}{2}$ .
$ \Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})$
$ \Rightarrow \theta = 120^\circ $
Therefore the vectors $\overrightarrow a $ and $\overrightarrow b $ have an angle of $120^\circ $ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
\[ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ } \]
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3 $
Hence, the magnitude of the difference of the vectors is $\sqrt 3$.
Therefore the option that matches the solution is (B) $\sqrt 3 ,120^\circ.$
Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main