
If the angular distance between the stars turns out to be approximately \[1100\] arc seconds, or \[0.30\] degrees. The moon appears to shift \[0.3\] degrees when we observe it from two vantage points \[2360km\] apart, then find the distance of the moon from the surface of the earth. Given the angular diameter of the moon is \[0.5\] degrees.

A) \[450642km\]
B) \[450392km\]
C) \[325684km\]
D) \[480264km\]
Answer
131.4k+ views
Hint: The phenomenon mentioned in the given question is parallax. Parallax is the apparent angular displacement of a celestial body due to its being observed from the surface of the earth instead of the centre of the earth. Parallax also arises due to a change in viewpoint caused by relative motion.
Complete step by step solution:
From the given question, we can say that the shift in the angular distance of the moon when viewed from two different vantage points is \[0.3\] degrees. Let this angular shift be \[\theta \].
Since angular measurements are usually made in radians, we must convert the given angular distance into radians.
\[\begin{align}
& \theta =0.3{}^\circ \\
& \Rightarrow \theta =0.3\times \dfrac{\pi }{180}rad \\
& \Rightarrow \theta =\dfrac{\pi }{600}rad \\
\end{align}\]
Using the properties of circles and arcs, we can say that arc length in a circle is equal to the product of the radius and the angle subtended by the arc.

Since the distance between the moon and the earth is more than the radius of the earth, the distance between the moon and the earth, DA, is roughly equal to DC.
Now for the arc BAC, we can say that arc length will be equal to the product of the radius, DC, and the angle subtended at DC.
Mathematically, we can say that \[d=D\times \theta \] where \[d\] is the arc length.
Substituting the values, we get
\[\begin{align}
& d=D\times \theta \\
& \Rightarrow 2360=D\times \dfrac{\pi }{600}rad \\
& \Rightarrow D=\dfrac{2360\times 600}{\pi }=450642km \\
\end{align}\]
Hence, option (A) is the correct answer.
Note:An alternative method to approach this question is using the definition of parallax. The Parallax formula states that the distance to a star is equal to the distance between the vantage points divided by the parallax angle, where the parallax angle is measured in arcseconds.
Complete step by step solution:
From the given question, we can say that the shift in the angular distance of the moon when viewed from two different vantage points is \[0.3\] degrees. Let this angular shift be \[\theta \].
Since angular measurements are usually made in radians, we must convert the given angular distance into radians.
\[\begin{align}
& \theta =0.3{}^\circ \\
& \Rightarrow \theta =0.3\times \dfrac{\pi }{180}rad \\
& \Rightarrow \theta =\dfrac{\pi }{600}rad \\
\end{align}\]
Using the properties of circles and arcs, we can say that arc length in a circle is equal to the product of the radius and the angle subtended by the arc.

Since the distance between the moon and the earth is more than the radius of the earth, the distance between the moon and the earth, DA, is roughly equal to DC.
Now for the arc BAC, we can say that arc length will be equal to the product of the radius, DC, and the angle subtended at DC.
Mathematically, we can say that \[d=D\times \theta \] where \[d\] is the arc length.
Substituting the values, we get
\[\begin{align}
& d=D\times \theta \\
& \Rightarrow 2360=D\times \dfrac{\pi }{600}rad \\
& \Rightarrow D=\dfrac{2360\times 600}{\pi }=450642km \\
\end{align}\]
Hence, option (A) is the correct answer.
Note:An alternative method to approach this question is using the definition of parallax. The Parallax formula states that the distance to a star is equal to the distance between the vantage points divided by the parallax angle, where the parallax angle is measured in arcseconds.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

NCERT Solutions for Class 11 Physics Chapter 6 Systems of Particles and Rotational Motion
