A steel rail of length $5\,m$ and area of cross section $40\,c{m^2}$ is prevented from expanding along its length while the temperature rises by $10\,{}^ \circ C$. If coefficient of linear expansion and young’s modulus of steel are $1.2 \times {10^{ - 5}}\,{K^{ - 1}}$ and $2 \times {10^{11}}\,N{m^{ - 2}}$ respectively, the force developed in the rail is approximately:
A) $2 \times {10^7}\,N$
B) $3 \times {10^{ - 5}}\,N$
C) $1 \times {10^5}\,N$
D) $2 \times {10^9}\,N$
Answer
Verified
122.7k+ views
Hint: The force developed in the rail can be determined by using the young’s modulus formula, the young’s modulus is the ratio of the stress and the strain. By using the stress and the strain formula in the young’s modulus formula, the force can be determined.
Formula used:
The young’s modulus is given by,
$Y = \dfrac{\sigma }{\varepsilon }$
Where, $Y$ is the young’s modulus of the material, $\sigma $ is the stress in the material and $\varepsilon $ is the strain in the material.
The stress of the material is given by,
$\sigma = \dfrac{F}{A}$
Where, $\sigma $ is the stress, $F$ is the force and $A$ is the area.
The strain of the material is given by,
$\varepsilon = \dfrac{{\Delta l}}{l}$
Where, $\varepsilon $ is the strain, $\Delta l$ is the change in the length and $l$ is the original length.
Complete step by step solution:
Given that,
The length of the rail is, $l = 5\,m$,
The Area of the cross section is, $A = 40\,c{m^2} = 40 \times {10^{ - 4}}\,{m^2}$,
The change in temperature is, $\Delta T = 10\,{}^ \circ C$,
The coefficient of the linear expansion is, $\alpha = 1.2 \times {10^{ - 5}}\,{K^{ - 1}}$,
The young’s modulus of the material is, $Y = 2 \times {10^{11}}\,N{m^{ - 2}}$.
The relation between the change in length and the change in the temperature is given by,
$\Delta l = l \times \alpha \times \Delta T$
By rearranging the terms in the above equation, then
$\dfrac{{\Delta l}}{l} = \alpha \times \Delta T\,...............\left( 1 \right)$
Now,
The young’s modulus is given by,
$Y = \dfrac{\sigma }{\varepsilon }$
By substituting the stress and strain formula in the above equation, then the above equation is written as,
$Y = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
By substituting the equation (1) in the above equation, then
$Y = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\alpha \times \Delta T}}$
By rearranging the terms in the above equation, then the above equation is written as,
$Y = \dfrac{F}{{A \times \alpha \times \Delta T}}$
By rearranging the terms in the above equation, then the above equation is written as,
$F = Y \times A \times \alpha \times \Delta T$
By substituting the young’s modulus, cross sectional area, coefficient of the linear expansion and change in temperature in the above equation, then
$F = 2 \times {10^{11}} \times 40 \times {10^{ - 4}} \times 1.2 \times {10^{ - 5}} \times 10$
By multiplying the terms in the above equation, then
$F = 9600\,N$
The above equation is also written as,
$F = 0.96 \times {10^4}\,N$
Then the force is approximately equal to,
$F \simeq 1 \times {10^5}\,N$
Hence, the option (C) is the correct answer.
Note: The force of the object is directly proportional to the young’s modulus of the material, cross sectional area of the material, coefficient of the linear expansion and the change in temperature. As the young’s modulus of the material, cross sectional area of the material, coefficient of the linear expansion and the change in temperature increases, then the force also increases.
Formula used:
The young’s modulus is given by,
$Y = \dfrac{\sigma }{\varepsilon }$
Where, $Y$ is the young’s modulus of the material, $\sigma $ is the stress in the material and $\varepsilon $ is the strain in the material.
The stress of the material is given by,
$\sigma = \dfrac{F}{A}$
Where, $\sigma $ is the stress, $F$ is the force and $A$ is the area.
The strain of the material is given by,
$\varepsilon = \dfrac{{\Delta l}}{l}$
Where, $\varepsilon $ is the strain, $\Delta l$ is the change in the length and $l$ is the original length.
Complete step by step solution:
Given that,
The length of the rail is, $l = 5\,m$,
The Area of the cross section is, $A = 40\,c{m^2} = 40 \times {10^{ - 4}}\,{m^2}$,
The change in temperature is, $\Delta T = 10\,{}^ \circ C$,
The coefficient of the linear expansion is, $\alpha = 1.2 \times {10^{ - 5}}\,{K^{ - 1}}$,
The young’s modulus of the material is, $Y = 2 \times {10^{11}}\,N{m^{ - 2}}$.
The relation between the change in length and the change in the temperature is given by,
$\Delta l = l \times \alpha \times \Delta T$
By rearranging the terms in the above equation, then
$\dfrac{{\Delta l}}{l} = \alpha \times \Delta T\,...............\left( 1 \right)$
Now,
The young’s modulus is given by,
$Y = \dfrac{\sigma }{\varepsilon }$
By substituting the stress and strain formula in the above equation, then the above equation is written as,
$Y = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
By substituting the equation (1) in the above equation, then
$Y = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\alpha \times \Delta T}}$
By rearranging the terms in the above equation, then the above equation is written as,
$Y = \dfrac{F}{{A \times \alpha \times \Delta T}}$
By rearranging the terms in the above equation, then the above equation is written as,
$F = Y \times A \times \alpha \times \Delta T$
By substituting the young’s modulus, cross sectional area, coefficient of the linear expansion and change in temperature in the above equation, then
$F = 2 \times {10^{11}} \times 40 \times {10^{ - 4}} \times 1.2 \times {10^{ - 5}} \times 10$
By multiplying the terms in the above equation, then
$F = 9600\,N$
The above equation is also written as,
$F = 0.96 \times {10^4}\,N$
Then the force is approximately equal to,
$F \simeq 1 \times {10^5}\,N$
Hence, the option (C) is the correct answer.
Note: The force of the object is directly proportional to the young’s modulus of the material, cross sectional area of the material, coefficient of the linear expansion and the change in temperature. As the young’s modulus of the material, cross sectional area of the material, coefficient of the linear expansion and the change in temperature increases, then the force also increases.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line