Answer
Verified
110.4k+ views
Hint At mean position velocity is max as the kinetic energy is max and acceleration is angular which is zero because angle made by the pendulum with the vertical is zero.
Complete step-by-step solution
In an oscillatory motion of a simple pendulum, we know that the kinetic energy of the bob is max at the mean position. Kinetic energy is given by
$K = \dfrac{1}{2}m{v^2}$
As kinetic energy is max only due to velocity, at mean position the velocity is max.
The weight of the bob W=mg is resolved into vector components, the cos component is balanced by the tension of the string and sin component is along the circular path of the pendulum. As the motion is part of the circular motion the acceleration is given by
$\alpha = - \dfrac{{mgL}}{I}\sin \theta $
At mean position θ is zero therefore,
$
\sin 0 = 0 \\
\alpha = 0 \\
$
Hence at mean position, velocity is max and acceleration is zero
correct option is A
Note Kinetic energy is zero at extreme position as velocity is zero and potential energy is maximum. Potential energy is minimum at the mean position which is also the lowest position.
If the motion of the pendulum makes a very small angle, then this motion can be approximated to Simple Harmonics Motion. One will need this information to solve SHM and pendulum involving questions.
Complete step-by-step solution
In an oscillatory motion of a simple pendulum, we know that the kinetic energy of the bob is max at the mean position. Kinetic energy is given by
$K = \dfrac{1}{2}m{v^2}$
As kinetic energy is max only due to velocity, at mean position the velocity is max.
The weight of the bob W=mg is resolved into vector components, the cos component is balanced by the tension of the string and sin component is along the circular path of the pendulum. As the motion is part of the circular motion the acceleration is given by
$\alpha = - \dfrac{{mgL}}{I}\sin \theta $
At mean position θ is zero therefore,
$
\sin 0 = 0 \\
\alpha = 0 \\
$
Hence at mean position, velocity is max and acceleration is zero
correct option is A
Note Kinetic energy is zero at extreme position as velocity is zero and potential energy is maximum. Potential energy is minimum at the mean position which is also the lowest position.
If the motion of the pendulum makes a very small angle, then this motion can be approximated to Simple Harmonics Motion. One will need this information to solve SHM and pendulum involving questions.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
Give one chemical test to distinguish between the following class 12 chemistry JEE_Main
Two mirrors one concave and the other convex are placed class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
A coil of inductance 020 H is connected in series with class 12 physics JEE_Main