Answer
Verified
110.7k+ views
Hint: Heat generated is related to the energy consumed by the resistor. The energy consumed is directly proportional to the square of the electric current. Check which of the options will consume the most energy.
Formula used: In this solution we will be using the following formulae;
\[H = {I^2}Rt\] where \[H\] is the heat generated by the resistor, \[I\] is the amount of current flowing through the resistor, \[R\] is the resistance of the resistor and \[t\] is the time for which the current flowed through the resistor.
Complete Step-by-Step solution:
The heat generated is simply the electrical energy consumed by the resistor.
Hence, to solve the above question, we calculate the energy consumed in each case of the options one after the other then check for which of them is maximum.
Hence the heat generated can be given as
\[H = {I^2}Rt\] where \[H\] is the heat generated by the resistor, \[I\] is the amount of current flowing through the resistor, \[R\] is the resistance of the resistor and \[t\] is the time for which the current flowed through the resistor.
Option A, current 5 ampere in 2 minutes
\[{H_a} = {5^2}\left( {10} \right)2 = 500J\]
For option B,
\[{H_b} = {4^2}\left( {10} \right)3 = 480J\]
For option C,
\[{H_c} = {3^2}\left( {10} \right)6 = 540J\]
And for option D,
\[{H_d} = {2^2}\left( {10} \right)5 = 200J\]
As can be observed, the maximum heat generated is option C.
Hence, the correct option is option C
Note: Alternatively, since the resistor is the same in all cases, we can simply find the heat generated per unit ohms in each case. As in
For option A,
\[{h_a} = {5^2} \times 2 = 50J/\Omega \] where \[h\] is the heat generated per unit resistance.
For option B,
\[{h_b} = {4^2} \times 3 = 48J/\Omega \]
For option C,
\[{h_d} = {3^2} \times 6 = 54J/\Omega \]
And for option D
\[{h_d} = {2^2} \times 5 = 20J/\Omega \]
And this still shows that option C is the correct option.
Formula used: In this solution we will be using the following formulae;
\[H = {I^2}Rt\] where \[H\] is the heat generated by the resistor, \[I\] is the amount of current flowing through the resistor, \[R\] is the resistance of the resistor and \[t\] is the time for which the current flowed through the resistor.
Complete Step-by-Step solution:
The heat generated is simply the electrical energy consumed by the resistor.
Hence, to solve the above question, we calculate the energy consumed in each case of the options one after the other then check for which of them is maximum.
Hence the heat generated can be given as
\[H = {I^2}Rt\] where \[H\] is the heat generated by the resistor, \[I\] is the amount of current flowing through the resistor, \[R\] is the resistance of the resistor and \[t\] is the time for which the current flowed through the resistor.
Option A, current 5 ampere in 2 minutes
\[{H_a} = {5^2}\left( {10} \right)2 = 500J\]
For option B,
\[{H_b} = {4^2}\left( {10} \right)3 = 480J\]
For option C,
\[{H_c} = {3^2}\left( {10} \right)6 = 540J\]
And for option D,
\[{H_d} = {2^2}\left( {10} \right)5 = 200J\]
As can be observed, the maximum heat generated is option C.
Hence, the correct option is option C
Note: Alternatively, since the resistor is the same in all cases, we can simply find the heat generated per unit ohms in each case. As in
For option A,
\[{h_a} = {5^2} \times 2 = 50J/\Omega \] where \[h\] is the heat generated per unit resistance.
For option B,
\[{h_b} = {4^2} \times 3 = 48J/\Omega \]
For option C,
\[{h_d} = {3^2} \times 6 = 54J/\Omega \]
And for option D
\[{h_d} = {2^2} \times 5 = 20J/\Omega \]
And this still shows that option C is the correct option.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main